| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix memory leak in kfd_mem_dmamap_userptr()
If the number of pages from the userptr BO differs from the SG BO then the
allocated memory for the SG table doesn't get freed before returning
-EINVAL, which may lead to a memory leak in some error paths. Fix this by
checking the number of pages before allocating memory for the SG table. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to invalidate dcc->f2fs_issue_discard in error path
Syzbot reports a NULL pointer dereference issue as below:
__refcount_add include/linux/refcount.h:193 [inline]
__refcount_inc include/linux/refcount.h:250 [inline]
refcount_inc include/linux/refcount.h:267 [inline]
get_task_struct include/linux/sched/task.h:110 [inline]
kthread_stop+0x34/0x1c0 kernel/kthread.c:703
f2fs_stop_discard_thread+0x3c/0x5c fs/f2fs/segment.c:1638
kill_f2fs_super+0x5c/0x194 fs/f2fs/super.c:4522
deactivate_locked_super+0x70/0xe8 fs/super.c:332
deactivate_super+0xd0/0xd4 fs/super.c:363
cleanup_mnt+0x1f8/0x234 fs/namespace.c:1186
__cleanup_mnt+0x20/0x30 fs/namespace.c:1193
task_work_run+0xc4/0x14c kernel/task_work.c:177
exit_task_work include/linux/task_work.h:38 [inline]
do_exit+0x26c/0xbe0 kernel/exit.c:795
do_group_exit+0x60/0xe8 kernel/exit.c:925
__do_sys_exit_group kernel/exit.c:936 [inline]
__se_sys_exit_group kernel/exit.c:934 [inline]
__wake_up_parent+0x0/0x40 kernel/exit.c:934
__invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581
The root cause of this issue is in error path of f2fs_start_discard_thread(),
it missed to invalidate dcc->f2fs_issue_discard, later kthread_stop() may
access invalid pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
fpga: prevent integer overflow in dfl_feature_ioctl_set_irq()
The "hdr.count * sizeof(s32)" multiplication can overflow on 32 bit
systems leading to memory corruption. Use array_size() to fix that. |
| In the Linux kernel, the following vulnerability has been resolved:
net: netsec: fix error handling in netsec_register_mdio()
If phy_device_register() fails, phy_device_free() need be called to
put refcount, so memory of phy device and device name can be freed
in callback function.
If get_phy_device() fails, mdiobus_unregister() need be called,
or it will cause warning in mdiobus_free() and kobject is leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: amba-pl011: avoid SBSA UART accessing DMACR register
Chapter "B Generic UART" in "ARM Server Base System Architecture" [1]
documentation describes a generic UART interface. Such generic UART
does not support DMA. In current code, sbsa_uart_pops and
amba_pl011_pops share the same stop_rx operation, which will invoke
pl011_dma_rx_stop, leading to an access of the DMACR register. This
commit adds a using_rx_dma check in pl011_dma_rx_stop to avoid the
access to DMACR register for SBSA UARTs which does not support DMA.
When the kernel enables DMA engine with "CONFIG_DMA_ENGINE=y", Linux
SBSA PL011 driver will access PL011 DMACR register in some functions.
For most real SBSA Pl011 hardware implementations, the DMACR write
behaviour will be ignored. So these DMACR operations will not cause
obvious problems. But for some virtual SBSA PL011 hardware, like Xen
virtual SBSA PL011 (vpl011) device, the behaviour might be different.
Xen vpl011 emulation will inject a data abort to guest, when guest is
accessing an unimplemented UART register. As Xen VPL011 is SBSA
compatible, it will not implement DMACR register. So when Linux SBSA
PL011 driver access DMACR register, it will get an unhandled data abort
fault and the application will get a segmentation fault:
Unhandled fault at 0xffffffc00944d048
Mem abort info:
ESR = 0x96000000
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x00: ttbr address size fault
Data abort info:
ISV = 0, ISS = 0x00000000
CM = 0, WnR = 0
swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000020e2e000
[ffffffc00944d048] pgd=100000003ffff803, p4d=100000003ffff803, pud=100000003ffff803, pmd=100000003fffa803, pte=006800009c090f13
Internal error: ttbr address size fault: 96000000 [#1] PREEMPT SMP
...
Call trace:
pl011_stop_rx+0x70/0x80
tty_port_shutdown+0x7c/0xb4
tty_port_close+0x60/0xcc
uart_close+0x34/0x8c
tty_release+0x144/0x4c0
__fput+0x78/0x220
____fput+0x1c/0x30
task_work_run+0x88/0xc0
do_notify_resume+0x8d0/0x123c
el0_svc+0xa8/0xc0
el0t_64_sync_handler+0xa4/0x130
el0t_64_sync+0x1a0/0x1a4
Code: b9000083 b901f001 794038a0 8b000042 (b9000041)
---[ end trace 83dd93df15c3216f ]---
note: bootlogd[132] exited with preempt_count 1
/etc/rcS.d/S07bootlogd: line 47: 132 Segmentation fault start-stop-daemon
This has been discussed in the Xen community, and we think it should fix
this in Linux. See [2] for more information.
[1] https://developer.arm.com/documentation/den0094/c/?lang=en
[2] https://lists.xenproject.org/archives/html/xen-devel/2022-11/msg00543.html |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rsi: Fix memory leak in rsi_coex_attach()
The coex_cb needs to be freed when rsi_create_kthread() failed in
rsi_coex_attach(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: deal with integer overflows in kmalloc_reserve()
Blamed commit changed:
ptr = kmalloc(size);
if (ptr)
size = ksize(ptr);
size = kmalloc_size_roundup(size);
ptr = kmalloc(size);
This allowed various crash as reported by syzbot [1]
and Kyle Zeng.
Problem is that if @size is bigger than 0x80000001,
kmalloc_size_roundup(size) returns 2^32.
kmalloc_reserve() uses a 32bit variable (obj_size),
so 2^32 is truncated to 0.
kmalloc(0) returns ZERO_SIZE_PTR which is not handled by
skb allocations.
Following trace can be triggered if a netdev->mtu is set
close to 0x7fffffff
We might in the future limit netdev->mtu to more sensible
limit (like KMALLOC_MAX_SIZE).
This patch is based on a syzbot report, and also a report
and tentative fix from Kyle Zeng.
[1]
BUG: KASAN: user-memory-access in __build_skb_around net/core/skbuff.c:294 [inline]
BUG: KASAN: user-memory-access in __alloc_skb+0x3c4/0x6e8 net/core/skbuff.c:527
Write of size 32 at addr 00000000fffffd10 by task syz-executor.4/22554
CPU: 1 PID: 22554 Comm: syz-executor.4 Not tainted 6.1.39-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/03/2023
Call trace:
dump_backtrace+0x1c8/0x1f4 arch/arm64/kernel/stacktrace.c:279
show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:286
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x120/0x1a0 lib/dump_stack.c:106
print_report+0xe4/0x4b4 mm/kasan/report.c:398
kasan_report+0x150/0x1ac mm/kasan/report.c:495
kasan_check_range+0x264/0x2a4 mm/kasan/generic.c:189
memset+0x40/0x70 mm/kasan/shadow.c:44
__build_skb_around net/core/skbuff.c:294 [inline]
__alloc_skb+0x3c4/0x6e8 net/core/skbuff.c:527
alloc_skb include/linux/skbuff.h:1316 [inline]
igmpv3_newpack+0x104/0x1088 net/ipv4/igmp.c:359
add_grec+0x81c/0x1124 net/ipv4/igmp.c:534
igmpv3_send_cr net/ipv4/igmp.c:667 [inline]
igmp_ifc_timer_expire+0x1b0/0x1008 net/ipv4/igmp.c:810
call_timer_fn+0x1c0/0x9f0 kernel/time/timer.c:1474
expire_timers kernel/time/timer.c:1519 [inline]
__run_timers+0x54c/0x710 kernel/time/timer.c:1790
run_timer_softirq+0x28/0x4c kernel/time/timer.c:1803
_stext+0x380/0xfbc
____do_softirq+0x14/0x20 arch/arm64/kernel/irq.c:79
call_on_irq_stack+0x24/0x4c arch/arm64/kernel/entry.S:891
do_softirq_own_stack+0x20/0x2c arch/arm64/kernel/irq.c:84
invoke_softirq kernel/softirq.c:437 [inline]
__irq_exit_rcu+0x1c0/0x4cc kernel/softirq.c:683
irq_exit_rcu+0x14/0x78 kernel/softirq.c:695
el0_interrupt+0x7c/0x2e0 arch/arm64/kernel/entry-common.c:717
__el0_irq_handler_common+0x18/0x24 arch/arm64/kernel/entry-common.c:724
el0t_64_irq_handler+0x10/0x1c arch/arm64/kernel/entry-common.c:729
el0t_64_irq+0x1a0/0x1a4 arch/arm64/kernel/entry.S:584 |
| In the Linux kernel, the following vulnerability has been resolved:
soc: ti: pm33xx: Fix refcount leak in am33xx_pm_probe
wkup_m3_ipc_get() takes refcount, which should be freed by
wkup_m3_ipc_put(). Add missing refcount release in the error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: freescale: Fix a memory out of bounds when num_configs is 1
The config passed in by pad wakeup is 1, when num_configs is 1,
Configuration [1] should not be fetched, which will be detected
by KASAN as a memory out of bounds condition. Modify to get
configs[1] when num_configs is 2. |
| In the Linux kernel, the following vulnerability has been resolved:
vc_screen: reload load of struct vc_data pointer in vcs_write() to avoid UAF
After a call to console_unlock() in vcs_write() the vc_data struct can be
freed by vc_port_destruct(). Because of that, the struct vc_data pointer
must be reloaded in the while loop in vcs_write() after console_lock() to
avoid a UAF when vcs_size() is called.
Syzkaller reported a UAF in vcs_size().
BUG: KASAN: slab-use-after-free in vcs_size (drivers/tty/vt/vc_screen.c:215)
Read of size 4 at addr ffff8880beab89a8 by task repro_vcs_size/4119
Call Trace:
<TASK>
__asan_report_load4_noabort (mm/kasan/report_generic.c:380)
vcs_size (drivers/tty/vt/vc_screen.c:215)
vcs_write (drivers/tty/vt/vc_screen.c:664)
vfs_write (fs/read_write.c:582 fs/read_write.c:564)
...
<TASK>
Allocated by task 1213:
kmalloc_trace (mm/slab_common.c:1064)
vc_allocate (./include/linux/slab.h:559 ./include/linux/slab.h:680
drivers/tty/vt/vt.c:1078 drivers/tty/vt/vt.c:1058)
con_install (drivers/tty/vt/vt.c:3334)
tty_init_dev (drivers/tty/tty_io.c:1303 drivers/tty/tty_io.c:1415
drivers/tty/tty_io.c:1392)
tty_open (drivers/tty/tty_io.c:2082 drivers/tty/tty_io.c:2128)
chrdev_open (fs/char_dev.c:415)
do_dentry_open (fs/open.c:921)
vfs_open (fs/open.c:1052)
...
Freed by task 4116:
kfree (mm/slab_common.c:1016)
vc_port_destruct (drivers/tty/vt/vt.c:1044)
tty_port_destructor (drivers/tty/tty_port.c:296)
tty_port_put (drivers/tty/tty_port.c:312)
vt_disallocate_all (drivers/tty/vt/vt_ioctl.c:662 (discriminator 2))
vt_ioctl (drivers/tty/vt/vt_ioctl.c:903)
tty_ioctl (drivers/tty/tty_io.c:2778)
...
The buggy address belongs to the object at ffff8880beab8800
which belongs to the cache kmalloc-1k of size 1024
The buggy address is located 424 bytes inside of
freed 1024-byte region [ffff8880beab8800, ffff8880beab8c00)
The buggy address belongs to the physical page:
page:00000000afc77580 refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0xbeab8
head:00000000afc77580 order:3 entire_mapcount:0 nr_pages_mapped:0
pincount:0
flags: 0xfffffc0010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff)
page_type: 0xffffffff()
raw: 000fffffc0010200 ffff888100042dc0 ffffea000426de00 dead000000000002
raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8880beab8880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880beab8900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8880beab8980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8880beab8a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880beab8a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
Disabling lock debugging due to kernel taint |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ptdma: check for null desc before calling pt_cmd_callback
Resolves a panic that can occur on AMD systems, typically during host
shutdown, after the PTDMA driver had been exercised. The issue was
the pt_issue_pending() function is mistakenly assuming that there will
be at least one descriptor in the Submitted queue when the function
is called. However, it is possible that both the Submitted and Issued
queues could be empty, which could result in pt_cmd_callback() being
mistakenly called with a NULL pointer.
Ref: Bugzilla Bug 216856. |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/irq-mvebu-gicp: Fix refcount leak in mvebu_gicp_probe
of_irq_find_parent() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: hidraw: fix data race on device refcount
The hidraw_open() function increments the hidraw device reference
counter. The counter has no dedicated synchronization mechanism,
resulting in a potential data race when concurrently opening a device.
The race is a regression introduced by commit 8590222e4b02 ("HID:
hidraw: Replace hidraw device table mutex with a rwsem"). While
minors_rwsem is intended to protect the hidraw_table itself, by instead
acquiring the lock for writing, the reference counter is also protected.
This is symmetrical to hidraw_release(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: mcq: Fix &hwq->cq_lock deadlock issue
When ufshcd_err_handler() is executed, CQ event interrupt can enter waiting
for the same lock. This can happen in ufshcd_handle_mcq_cq_events() and
also in ufs_mtk_mcq_intr(). The following warning message will be generated
when &hwq->cq_lock is used in IRQ context with IRQ enabled. Use
ufshcd_mcq_poll_cqe_lock() with spin_lock_irqsave instead of spin_lock to
resolve the deadlock issue.
[name:lockdep&]WARNING: inconsistent lock state
[name:lockdep&]--------------------------------
[name:lockdep&]inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage.
[name:lockdep&]kworker/u16:4/260 [HC0[0]:SC0[0]:HE1:SE1] takes:
ffffff8028444600 (&hwq->cq_lock){?.-.}-{2:2}, at:
ufshcd_mcq_poll_cqe_lock+0x30/0xe0
[name:lockdep&]{IN-HARDIRQ-W} state was registered at:
lock_acquire+0x17c/0x33c
_raw_spin_lock+0x5c/0x7c
ufshcd_mcq_poll_cqe_lock+0x30/0xe0
ufs_mtk_mcq_intr+0x60/0x1bc [ufs_mediatek_mod]
__handle_irq_event_percpu+0x140/0x3ec
handle_irq_event+0x50/0xd8
handle_fasteoi_irq+0x148/0x2b0
generic_handle_domain_irq+0x4c/0x6c
gic_handle_irq+0x58/0x134
call_on_irq_stack+0x40/0x74
do_interrupt_handler+0x84/0xe4
el1_interrupt+0x3c/0x78
<snip>
Possible unsafe locking scenario:
CPU0
----
lock(&hwq->cq_lock);
<Interrupt>
lock(&hwq->cq_lock);
*** DEADLOCK ***
2 locks held by kworker/u16:4/260:
[name:lockdep&]
stack backtrace:
CPU: 7 PID: 260 Comm: kworker/u16:4 Tainted: G S W OE
6.1.17-mainline-android14-2-g277223301adb #1
Workqueue: ufs_eh_wq_0 ufshcd_err_handler
Call trace:
dump_backtrace+0x10c/0x160
show_stack+0x20/0x30
dump_stack_lvl+0x98/0xd8
dump_stack+0x20/0x60
print_usage_bug+0x584/0x76c
mark_lock_irq+0x488/0x510
mark_lock+0x1ec/0x25c
__lock_acquire+0x4d8/0xffc
lock_acquire+0x17c/0x33c
_raw_spin_lock+0x5c/0x7c
ufshcd_mcq_poll_cqe_lock+0x30/0xe0
ufshcd_poll+0x68/0x1b0
ufshcd_transfer_req_compl+0x9c/0xc8
ufshcd_err_handler+0x3bc/0xea0
process_one_work+0x2f4/0x7e8
worker_thread+0x234/0x450
kthread+0x110/0x134
ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: Fix UAF in hci_disconnect_all_sync
Use-after-free can occur in hci_disconnect_all_sync if a connection is
deleted by concurrent processing of a controller event.
To prevent this the code now tries to iterate over the list backwards
to ensure the links are cleanup before its parents, also it no longer
relies on a cursor, instead it always uses the last element since
hci_abort_conn_sync is guaranteed to call hci_conn_del.
UAF crash log:
==================================================================
BUG: KASAN: slab-use-after-free in hci_set_powered_sync
(net/bluetooth/hci_sync.c:5424) [bluetooth]
Read of size 8 at addr ffff888009d9c000 by task kworker/u9:0/124
CPU: 0 PID: 124 Comm: kworker/u9:0 Tainted: G W
6.5.0-rc1+ #10
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
1.16.2-1.fc38 04/01/2014
Workqueue: hci0 hci_cmd_sync_work [bluetooth]
Call Trace:
<TASK>
dump_stack_lvl+0x5b/0x90
print_report+0xcf/0x670
? __virt_addr_valid+0xdd/0x160
? hci_set_powered_sync+0x2c9/0x4a0 [bluetooth]
kasan_report+0xa6/0xe0
? hci_set_powered_sync+0x2c9/0x4a0 [bluetooth]
? __pfx_set_powered_sync+0x10/0x10 [bluetooth]
hci_set_powered_sync+0x2c9/0x4a0 [bluetooth]
? __pfx_hci_set_powered_sync+0x10/0x10 [bluetooth]
? __pfx_lock_release+0x10/0x10
? __pfx_set_powered_sync+0x10/0x10 [bluetooth]
hci_cmd_sync_work+0x137/0x220 [bluetooth]
process_one_work+0x526/0x9d0
? __pfx_process_one_work+0x10/0x10
? __pfx_do_raw_spin_lock+0x10/0x10
? mark_held_locks+0x1a/0x90
worker_thread+0x92/0x630
? __pfx_worker_thread+0x10/0x10
kthread+0x196/0x1e0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK>
Allocated by task 1782:
kasan_save_stack+0x33/0x60
kasan_set_track+0x25/0x30
__kasan_kmalloc+0x8f/0xa0
hci_conn_add+0xa5/0xa80 [bluetooth]
hci_bind_cis+0x881/0x9b0 [bluetooth]
iso_connect_cis+0x121/0x520 [bluetooth]
iso_sock_connect+0x3f6/0x790 [bluetooth]
__sys_connect+0x109/0x130
__x64_sys_connect+0x40/0x50
do_syscall_64+0x60/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Freed by task 695:
kasan_save_stack+0x33/0x60
kasan_set_track+0x25/0x30
kasan_save_free_info+0x2b/0x50
__kasan_slab_free+0x10a/0x180
__kmem_cache_free+0x14d/0x2e0
device_release+0x5d/0xf0
kobject_put+0xdf/0x270
hci_disconn_complete_evt+0x274/0x3a0 [bluetooth]
hci_event_packet+0x579/0x7e0 [bluetooth]
hci_rx_work+0x287/0xaa0 [bluetooth]
process_one_work+0x526/0x9d0
worker_thread+0x92/0x630
kthread+0x196/0x1e0
ret_from_fork+0x2c/0x50
================================================================== |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Fix crash in nfsd4_read_release()
When tracing is enabled, the trace_nfsd_read_done trace point
crashes during the pynfs read.testNoFh test. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Fix device use-after-free on unbind
A recent change fixed device reference leaks when looking up drm
platform device driver data during bind() but failed to remove a partial
fix which had been added by commit 80805b62ea5b ("drm/mediatek: Fix
kobject put for component sub-drivers").
This results in a reference imbalance on component bind() failures and
on unbind() which could lead to a user-after-free.
Make sure to only drop the references after retrieving the driver data
by effectively reverting the previous partial fix.
Note that holding a reference to a device does not prevent its driver
data from going away so there is no point in keeping the reference. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: fix race in hci_cmd_sync_dequeue_once
hci_cmd_sync_dequeue_once() does lookup and then cancel
the entry under two separate lock sections. Meanwhile,
hci_cmd_sync_work() can also delete the same entry,
leading to double list_del() and "UAF".
Fix this by holding cmd_sync_work_lock across both
lookup and cancel, so that the entry cannot be removed
concurrently. |
| In the Linux kernel, the following vulnerability has been resolved:
regmap: slimbus: fix bus_context pointer in regmap init calls
Commit 4e65bda8273c ("ASoC: wcd934x: fix error handling in
wcd934x_codec_parse_data()") revealed the problem in the slimbus regmap.
That commit breaks audio playback, for instance, on sdm845 Thundercomm
Dragonboard 845c board:
Unable to handle kernel paging request at virtual address ffff8000847cbad4
...
CPU: 5 UID: 0 PID: 776 Comm: aplay Not tainted 6.18.0-rc1-00028-g7ea30958b305 #11 PREEMPT
Hardware name: Thundercomm Dragonboard 845c (DT)
...
Call trace:
slim_xfer_msg+0x24/0x1ac [slimbus] (P)
slim_read+0x48/0x74 [slimbus]
regmap_slimbus_read+0x18/0x24 [regmap_slimbus]
_regmap_raw_read+0xe8/0x174
_regmap_bus_read+0x44/0x80
_regmap_read+0x60/0xd8
_regmap_update_bits+0xf4/0x140
_regmap_select_page+0xa8/0x124
_regmap_raw_write_impl+0x3b8/0x65c
_regmap_bus_raw_write+0x60/0x80
_regmap_write+0x58/0xc0
regmap_write+0x4c/0x80
wcd934x_hw_params+0x494/0x8b8 [snd_soc_wcd934x]
snd_soc_dai_hw_params+0x3c/0x7c [snd_soc_core]
__soc_pcm_hw_params+0x22c/0x634 [snd_soc_core]
dpcm_be_dai_hw_params+0x1d4/0x38c [snd_soc_core]
dpcm_fe_dai_hw_params+0x9c/0x17c [snd_soc_core]
snd_pcm_hw_params+0x124/0x464 [snd_pcm]
snd_pcm_common_ioctl+0x110c/0x1820 [snd_pcm]
snd_pcm_ioctl+0x34/0x4c [snd_pcm]
__arm64_sys_ioctl+0xac/0x104
invoke_syscall+0x48/0x104
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x34/0xec
el0t_64_sync_handler+0xa0/0xf0
el0t_64_sync+0x198/0x19c
The __devm_regmap_init_slimbus() started to be used instead of
__regmap_init_slimbus() after the commit mentioned above and turns out
the incorrect bus_context pointer (3rd argument) was used in
__devm_regmap_init_slimbus(). It should be just "slimbus" (which is equal
to &slimbus->dev). Correct it. The wcd934x codec seems to be the only or
the first user of devm_regmap_init_slimbus() but we should fix it till
the point where __devm_regmap_init_slimbus() was introduced therefore
two "Fixes" tags.
While at this, also correct the same argument in __regmap_init_slimbus(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix crash while sending Action Frames in standalone AP Mode
Currently, whenever there is a need to transmit an Action frame,
the brcmfmac driver always uses the P2P vif to send the "actframe" IOVAR to
firmware. The P2P interfaces were available when wpa_supplicant is managing
the wlan interface.
However, the P2P interfaces are not created/initialized when only hostapd
is managing the wlan interface. And if hostapd receives an ANQP Query REQ
Action frame even from an un-associated STA, the brcmfmac driver tries
to use an uninitialized P2P vif pointer for sending the IOVAR to firmware.
This NULL pointer dereferencing triggers a driver crash.
[ 1417.074538] Unable to handle kernel NULL pointer dereference at virtual
address 0000000000000000
[...]
[ 1417.075188] Hardware name: Raspberry Pi 4 Model B Rev 1.5 (DT)
[...]
[ 1417.075653] Call trace:
[ 1417.075662] brcmf_p2p_send_action_frame+0x23c/0xc58 [brcmfmac]
[ 1417.075738] brcmf_cfg80211_mgmt_tx+0x304/0x5c0 [brcmfmac]
[ 1417.075810] cfg80211_mlme_mgmt_tx+0x1b0/0x428 [cfg80211]
[ 1417.076067] nl80211_tx_mgmt+0x238/0x388 [cfg80211]
[ 1417.076281] genl_family_rcv_msg_doit+0xe0/0x158
[ 1417.076302] genl_rcv_msg+0x220/0x2a0
[ 1417.076317] netlink_rcv_skb+0x68/0x140
[ 1417.076330] genl_rcv+0x40/0x60
[ 1417.076343] netlink_unicast+0x330/0x3b8
[ 1417.076357] netlink_sendmsg+0x19c/0x3f8
[ 1417.076370] __sock_sendmsg+0x64/0xc0
[ 1417.076391] ____sys_sendmsg+0x268/0x2a0
[ 1417.076408] ___sys_sendmsg+0xb8/0x118
[ 1417.076427] __sys_sendmsg+0x90/0xf8
[ 1417.076445] __arm64_sys_sendmsg+0x2c/0x40
[ 1417.076465] invoke_syscall+0x50/0x120
[ 1417.076486] el0_svc_common.constprop.0+0x48/0xf0
[ 1417.076506] do_el0_svc+0x24/0x38
[ 1417.076525] el0_svc+0x30/0x100
[ 1417.076548] el0t_64_sync_handler+0x100/0x130
[ 1417.076569] el0t_64_sync+0x190/0x198
[ 1417.076589] Code: f9401e80 aa1603e2 f9403be1 5280e483 (f9400000)
Fix this, by always using the vif corresponding to the wdev on which the
Action frame Transmission request was initiated by the userspace. This way,
even if P2P vif is not available, the IOVAR is sent to firmware on AP vif
and the ANQP Query RESP Action frame is transmitted without crashing the
driver.
Move init_completion() for "send_af_done" from brcmf_p2p_create_p2pdev()
to brcmf_p2p_attach(). Because the former function would not get executed
when only hostapd is managing wlan interface, and it is not safe to do
reinit_completion() later in brcmf_p2p_tx_action_frame(), without any prior
init_completion().
And in the brcmf_p2p_tx_action_frame() function, the condition check for
P2P Presence response frame is not needed, since the wpa_supplicant is
properly sending the P2P Presense Response frame on the P2P-GO vif instead
of the P2P-Device vif.
[Cc stable] |