| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| IC Realtime ICIP-P2012T 2.420 is vulnerable to Incorrect Access Control via unauthenticated port access. |
| IC Realtime ICIP-P2012T 2.420 is vulnerable to Incorrect Access Control via an exposed HTTP channel using VLC network. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: light: as73211: Ensure buffer holes are zeroed
Given that the buffer is copied to a kfifo that ultimately user space
can read, ensure we zero it. |
| In the Linux kernel, the following vulnerability has been resolved:
tls: fix handling of zero-length records on the rx_list
Each recvmsg() call must process either
- only contiguous DATA records (any number of them)
- one non-DATA record
If the next record has different type than what has already been
processed we break out of the main processing loop. If the record
has already been decrypted (which may be the case for TLS 1.3 where
we don't know type until decryption) we queue the pending record
to the rx_list. Next recvmsg() will pick it up from there.
Queuing the skb to rx_list after zero-copy decrypt is not possible,
since in that case we decrypted directly to the user space buffer,
and we don't have an skb to queue (darg.skb points to the ciphertext
skb for access to metadata like length).
Only data records are allowed zero-copy, and we break the processing
loop after each non-data record. So we should never zero-copy and
then find out that the record type has changed. The corner case
we missed is when the initial record comes from rx_list, and it's
zero length. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: fix slab-out-of-bounds in hfs_bnode_read()
This patch introduces is_bnode_offset_valid() method that checks
the requested offset value. Also, it introduces
check_and_correct_requested_length() method that checks and
correct the requested length (if it is necessary). These methods
are used in hfs_bnode_read(), hfs_bnode_write(), hfs_bnode_clear(),
hfs_bnode_copy(), and hfs_bnode_move() with the goal to prevent
the access out of allocated memory and triggering the crash. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc()
The hfsplus_readdir() method is capable to crash by calling
hfsplus_uni2asc():
[ 667.121659][ T9805] ==================================================================
[ 667.122651][ T9805] BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0x902/0xa10
[ 667.123627][ T9805] Read of size 2 at addr ffff88802592f40c by task repro/9805
[ 667.124578][ T9805]
[ 667.124876][ T9805] CPU: 3 UID: 0 PID: 9805 Comm: repro Not tainted 6.16.0-rc3 #1 PREEMPT(full)
[ 667.124886][ T9805] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 667.124890][ T9805] Call Trace:
[ 667.124893][ T9805] <TASK>
[ 667.124896][ T9805] dump_stack_lvl+0x10e/0x1f0
[ 667.124911][ T9805] print_report+0xd0/0x660
[ 667.124920][ T9805] ? __virt_addr_valid+0x81/0x610
[ 667.124928][ T9805] ? __phys_addr+0xe8/0x180
[ 667.124934][ T9805] ? hfsplus_uni2asc+0x902/0xa10
[ 667.124942][ T9805] kasan_report+0xc6/0x100
[ 667.124950][ T9805] ? hfsplus_uni2asc+0x902/0xa10
[ 667.124959][ T9805] hfsplus_uni2asc+0x902/0xa10
[ 667.124966][ T9805] ? hfsplus_bnode_read+0x14b/0x360
[ 667.124974][ T9805] hfsplus_readdir+0x845/0xfc0
[ 667.124984][ T9805] ? __pfx_hfsplus_readdir+0x10/0x10
[ 667.124994][ T9805] ? stack_trace_save+0x8e/0xc0
[ 667.125008][ T9805] ? iterate_dir+0x18b/0xb20
[ 667.125015][ T9805] ? trace_lock_acquire+0x85/0xd0
[ 667.125022][ T9805] ? lock_acquire+0x30/0x80
[ 667.125029][ T9805] ? iterate_dir+0x18b/0xb20
[ 667.125037][ T9805] ? down_read_killable+0x1ed/0x4c0
[ 667.125044][ T9805] ? putname+0x154/0x1a0
[ 667.125051][ T9805] ? __pfx_down_read_killable+0x10/0x10
[ 667.125058][ T9805] ? apparmor_file_permission+0x239/0x3e0
[ 667.125069][ T9805] iterate_dir+0x296/0xb20
[ 667.125076][ T9805] __x64_sys_getdents64+0x13c/0x2c0
[ 667.125084][ T9805] ? __pfx___x64_sys_getdents64+0x10/0x10
[ 667.125091][ T9805] ? __x64_sys_openat+0x141/0x200
[ 667.125126][ T9805] ? __pfx_filldir64+0x10/0x10
[ 667.125134][ T9805] ? do_user_addr_fault+0x7fe/0x12f0
[ 667.125143][ T9805] do_syscall_64+0xc9/0x480
[ 667.125151][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 667.125158][ T9805] RIP: 0033:0x7fa8753b2fc9
[ 667.125164][ T9805] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 48
[ 667.125172][ T9805] RSP: 002b:00007ffe96f8e0f8 EFLAGS: 00000217 ORIG_RAX: 00000000000000d9
[ 667.125181][ T9805] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa8753b2fc9
[ 667.125185][ T9805] RDX: 0000000000000400 RSI: 00002000000063c0 RDI: 0000000000000004
[ 667.125190][ T9805] RBP: 00007ffe96f8e110 R08: 00007ffe96f8e110 R09: 00007ffe96f8e110
[ 667.125195][ T9805] R10: 0000000000000000 R11: 0000000000000217 R12: 0000556b1e3b4260
[ 667.125199][ T9805] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 667.125207][ T9805] </TASK>
[ 667.125210][ T9805]
[ 667.145632][ T9805] Allocated by task 9805:
[ 667.145991][ T9805] kasan_save_stack+0x20/0x40
[ 667.146352][ T9805] kasan_save_track+0x14/0x30
[ 667.146717][ T9805] __kasan_kmalloc+0xaa/0xb0
[ 667.147065][ T9805] __kmalloc_noprof+0x205/0x550
[ 667.147448][ T9805] hfsplus_find_init+0x95/0x1f0
[ 667.147813][ T9805] hfsplus_readdir+0x220/0xfc0
[ 667.148174][ T9805] iterate_dir+0x296/0xb20
[ 667.148549][ T9805] __x64_sys_getdents64+0x13c/0x2c0
[ 667.148937][ T9805] do_syscall_64+0xc9/0x480
[ 667.149291][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 667.149809][ T9805]
[ 667.150030][ T9805] The buggy address belongs to the object at ffff88802592f000
[ 667.150030][ T9805] which belongs to the cache kmalloc-2k of size 2048
[ 667.151282][ T9805] The buggy address is located 0 bytes to the right of
[ 667.151282][ T9805] allocated 1036-byte region [ffff88802592f000, ffff88802592f40c)
[ 667.1
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drbd: add missing kref_get in handle_write_conflicts
With `two-primaries` enabled, DRBD tries to detect "concurrent" writes
and handle write conflicts, so that even if you write to the same sector
simultaneously on both nodes, they end up with the identical data once
the writes are completed.
In handling "superseeded" writes, we forgot a kref_get,
resulting in a premature drbd_destroy_device and use after free,
and further to kernel crashes with symptoms.
Relevance: No one should use DRBD as a random data generator, and apparently
all users of "two-primaries" handle concurrent writes correctly on layer up.
That is cluster file systems use some distributed lock manager,
and live migration in virtualization environments stops writes on one node
before starting writes on the other node.
Which means that other than for "test cases",
this code path is never taken in real life.
FYI, in DRBD 9, things are handled differently nowadays. We still detect
"write conflicts", but no longer try to be smart about them.
We decided to disconnect hard instead: upper layers must not submit concurrent
writes. If they do, that's their fault. |
| Reliance on untrusted inputs in a security decision in Microsoft Office allows an unauthorized attacker to bypass a security feature locally. |
| Suricata is a network IDS, IPS and NSM engine. Prior to versions 8.0.3 and 7.0.14, crafted DCERPC traffic can cause Suricata to expand a buffer w/o limits, leading to memory exhaustion and the process getting killed. While reported for DCERPC over UDP, it is believed that DCERPC over TCP and SMB are also vulnerable. DCERPC/TCP in the default configuration should not be vulnerable as the default stream depth is limited to 1MiB. Versions 8.0.3 and 7.0.14 contain a patch. Some workarounds are available. For DCERPC/UDP, disable the parser. For DCERPC/TCP, the `stream.reassembly.depth` setting will limit the amount of data that can be buffered. For DCERPC/SMB, the `stream.reassembly.depth` can be used as well, but is set to unlimited by default. Imposing a limit here may lead to loss of visibility in SMB. |
| Integer Overflow or Wraparound vulnerability in yoyofr modizer.This issue affects modizer: before 4.1.1. |
| Out-of-bounds Read vulnerability in Rinnegatamante lpp-vita.This issue affects lpp-vita: before lpp-vita r6. |
| Use-after-free in the Layout: Scrolling and Overflow component. This vulnerability affects Firefox < 147.0.2. |
| Loop with Unreachable Exit Condition ('Infinite Loop') vulnerability in ixray-team ixray-1.6-stcop.This issue affects ixray-1.6-stcop: before 1.3. |
| The vulnerability stems from an incorrect error-checking logic in the CreateCounter() function (in threadx/utility/rtos_compatibility_layers/OSEK/tx_osek.c) when handling the return value of osek_get_counter(). Specifically, the current code checks if cntr_id equals 0u to determine failure, but @osek_get_counter() actually returns E_OS_SYS_STACK (defined as 12U) when it fails. This mismatch causes the error branch to never execute even when the counter pool is exhausted.
As a result, when the counter pool is depleted, the code proceeds to cast the error code (12U) to a pointer (OSEK_COUNTER *), creating a wild pointer. Subsequent writes to members of this pointer lead to writes to illegal memory addresses (e.g., 0x0000000C), which can trigger immediate HardFaults or silent memory corruption.
This vulnerability poses significant risks, including potential denial-of-service attacks (via repeated calls to exhaust the counter pool) and unauthorized memory access. |
| Missing Authorization vulnerability in e-plugins Lawyer Directory lawyer-directory allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Lawyer Directory: from n/a through <= 1.3.4. |
| Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in fuelthemes North north-wp allows PHP Local File Inclusion.This issue affects North: from n/a through <= 5.7.5. |
| Deserialization of Untrusted Data vulnerability in fuelthemes North north-wp allows Object Injection.This issue affects North: from n/a through <= 5.7.5. |
| Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') vulnerability in VibeThemes WPLMS wplms_plugin allows Path Traversal.This issue affects WPLMS: from n/a through <= 1.9.9.5.4. |
| Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in AncoraThemes Hobo hobo allows PHP Local File Inclusion.This issue affects Hobo: from n/a through <= 1.0.10. |
| Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in AncoraThemes Snow Mountain snowmountain allows PHP Local File Inclusion.This issue affects Snow Mountain: from n/a through <= 1.4.3. |