Search

Search Results (329871 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-58581 1 Sick 1 Enterprise Analytics 2026-01-27 4.3 Medium
When an error occurs in the application a full stacktrace is provided to the user. The stacktrace lists class and method names as well as other internal information. An attacker can thus obtain information about the technology used and the structure of the application.
CVE-2025-58582 1 Sick 1 Enterprise Analytics 2026-01-27 5.3 Medium
If a user tries to login but the provided credentials are incorrect a log is created. The data for this POST requests is not validated and it’s possible to send giant payloads which are then logged.
CVE-2023-31595 2 Ic, Icrealtime 2 Realtime Icip-p2012t Firmware, Icip-p2012t 2026-01-27 7.5 High
IC Realtime ICIP-P2012T 2.420 is vulnerable to Incorrect Access Control via unauthenticated port access.
CVE-2023-31594 2 Ic, Icrealtime 2 Realtime Icip-p2012t Firmware, Icip-p2012t 2026-01-27 7.5 High
IC Realtime ICIP-P2012T 2.420 is vulnerable to Incorrect Access Control via an exposed HTTP channel using VLC network.
CVE-2025-39737 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-27 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/kmemleak: avoid soft lockup in __kmemleak_do_cleanup() A soft lockup warning was observed on a relative small system x86-64 system with 16 GB of memory when running a debug kernel with kmemleak enabled. watchdog: BUG: soft lockup - CPU#8 stuck for 33s! [kworker/8:1:134] The test system was running a workload with hot unplug happening in parallel. Then kemleak decided to disable itself due to its inability to allocate more kmemleak objects. The debug kernel has its CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE set to 40,000. The soft lockup happened in kmemleak_do_cleanup() when the existing kmemleak objects were being removed and deleted one-by-one in a loop via a workqueue. In this particular case, there are at least 40,000 objects that need to be processed and given the slowness of a debug kernel and the fact that a raw_spinlock has to be acquired and released in __delete_object(), it could take a while to properly handle all these objects. As kmemleak has been disabled in this case, the object removal and deletion process can be further optimized as locking isn't really needed. However, it is probably not worth the effort to optimize for such an edge case that should rarely happen. So the simple solution is to call cond_resched() at periodic interval in the iteration loop to avoid soft lockup.
CVE-2026-1476 2026-01-27 N/A
An out-of-band SQL injection vulnerability (OOB SQLi) has been detected in the Performance Evaluation (EDD) application developed by Gabinete Técnico de Programación. Exploiting this vulnerability in the parameter 'Id_usuario' in ‘/evaluacion_acciones_ver_auto.aspx’, could allow an attacker to extract sensitive information from the database through external channels, without the affected application returning the data directly, compromising the confidentiality of the stored information.
CVE-2025-39687 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-27 7.1 High
In the Linux kernel, the following vulnerability has been resolved: iio: light: as73211: Ensure buffer holes are zeroed Given that the buffer is copied to a kfifo that ultimately user space can read, ensure we zero it.
CVE-2025-39682 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-27 7.1 High
In the Linux kernel, the following vulnerability has been resolved: tls: fix handling of zero-length records on the rx_list Each recvmsg() call must process either - only contiguous DATA records (any number of them) - one non-DATA record If the next record has different type than what has already been processed we break out of the main processing loop. If the record has already been decrypted (which may be the case for TLS 1.3 where we don't know type until decryption) we queue the pending record to the rx_list. Next recvmsg() will pick it up from there. Queuing the skb to rx_list after zero-copy decrypt is not possible, since in that case we decrypted directly to the user space buffer, and we don't have an skb to queue (darg.skb points to the ciphertext skb for access to metadata like length). Only data records are allowed zero-copy, and we break the processing loop after each non-data record. So we should never zero-copy and then find out that the record type has changed. The corner case we missed is when the initial record comes from rx_list, and it's zero length.
CVE-2026-22796 2026-01-27 N/A
Issue summary: A type confusion vulnerability exists in the signature verification of signed PKCS#7 data where an ASN1_TYPE union member is accessed without first validating the type, causing an invalid or NULL pointer dereference when processing malformed PKCS#7 data. Impact summary: An application performing signature verification of PKCS#7 data or calling directly the PKCS7_digest_from_attributes() function can be caused to dereference an invalid or NULL pointer when reading, resulting in a Denial of Service. The function PKCS7_digest_from_attributes() accesses the message digest attribute value without validating its type. When the type is not V_ASN1_OCTET_STRING, this results in accessing invalid memory through the ASN1_TYPE union, causing a crash. Exploiting this vulnerability requires an attacker to provide a malformed signed PKCS#7 to an application that verifies it. The impact of the exploit is just a Denial of Service, the PKCS7 API is legacy and applications should be using the CMS API instead. For these reasons the issue was assessed as Low severity. The FIPS modules in 3.5, 3.4, 3.3 and 3.0 are not affected by this issue, as the PKCS#7 parsing implementation is outside the OpenSSL FIPS module boundary. OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0, 1.1.1 and 1.0.2 are vulnerable to this issue.
CVE-2025-69559 2026-01-27 N/A
code-projects Computer Book Store 1.0 is vulnerable to File Upload in admin_add.php.
CVE-2026-1475 2026-01-27 N/A
An out-of-band SQL injection vulnerability (OOB SQLi) has been detected in the Performance Evaluation (EDD) application developed by Gabinete Técnico de Programación. Exploiting this vulnerability in the parameter ‘Id_usuario' in ‘/evaluacion_acciones_evalua.aspx’, could allow an attacker to extract sensitive information from the database through external channels, without the affected application returning the data directly, compromising the confidentiality of the stored information.
CVE-2026-1474 2026-01-27 N/A
An out-of-band SQL injection vulnerability (OOB SQLi) has been detected in the Performance Evaluation (EDD) application developed by Gabinete Técnico de Programación. Exploiting this vulnerability in the parameter 'Id_usuario' and 'Id_evaluacion' en ‘/evaluacion_inicio.aspx’, could allow an attacker to extract sensitive information from the database through external channels, without the affected application returning the data directly, compromising the confidentiality of the stored information.
CVE-2026-1473 2026-01-27 N/A
An out-of-band SQL injection vulnerability (OOB SQLi) has been detected in the Performance Evaluation (EDD) application developed by Gabinete Técnico de Programación. Exploiting this vulnerability in the parameter 'Id_usuario’ in '/evaluacion_competencias_evalua.aspx', could allow an attacker to extract sensitive information from the database through external channels, without the affected application returning the data directly, compromising the confidentiality of the stored information.
CVE-2026-1472 2026-01-27 N/A
An out-of-band SQL injection vulnerability (OOB SQLi) has been detected in the Performance Evaluation (EDD) application developed by Gabinete Técnico de Programación. Exploiting this vulnerability in the parameter 'txAny' in '/evaluacion_competencias_autoeval_list.aspx', could allow an attacker to extract sensitive information from the database through external channels, without the affected application returning the data directly, compromising the confidentiality of the stored information.
CVE-2025-69562 2026-01-27 N/A
code-projects Mobile Shop Management System 1.0 is vulnerable to SQL Injection in /insertmessage.php via the userid parameter.
CVE-2025-38715 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-27 7.1 High
In the Linux kernel, the following vulnerability has been resolved: hfs: fix slab-out-of-bounds in hfs_bnode_read() This patch introduces is_bnode_offset_valid() method that checks the requested offset value. Also, it introduces check_and_correct_requested_length() method that checks and correct the requested length (if it is necessary). These methods are used in hfs_bnode_read(), hfs_bnode_write(), hfs_bnode_clear(), hfs_bnode_copy(), and hfs_bnode_move() with the goal to prevent the access out of allocated memory and triggering the crash.
CVE-2025-38713 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-27 7.1 High
In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc() The hfsplus_readdir() method is capable to crash by calling hfsplus_uni2asc(): [ 667.121659][ T9805] ================================================================== [ 667.122651][ T9805] BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0x902/0xa10 [ 667.123627][ T9805] Read of size 2 at addr ffff88802592f40c by task repro/9805 [ 667.124578][ T9805] [ 667.124876][ T9805] CPU: 3 UID: 0 PID: 9805 Comm: repro Not tainted 6.16.0-rc3 #1 PREEMPT(full) [ 667.124886][ T9805] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 667.124890][ T9805] Call Trace: [ 667.124893][ T9805] <TASK> [ 667.124896][ T9805] dump_stack_lvl+0x10e/0x1f0 [ 667.124911][ T9805] print_report+0xd0/0x660 [ 667.124920][ T9805] ? __virt_addr_valid+0x81/0x610 [ 667.124928][ T9805] ? __phys_addr+0xe8/0x180 [ 667.124934][ T9805] ? hfsplus_uni2asc+0x902/0xa10 [ 667.124942][ T9805] kasan_report+0xc6/0x100 [ 667.124950][ T9805] ? hfsplus_uni2asc+0x902/0xa10 [ 667.124959][ T9805] hfsplus_uni2asc+0x902/0xa10 [ 667.124966][ T9805] ? hfsplus_bnode_read+0x14b/0x360 [ 667.124974][ T9805] hfsplus_readdir+0x845/0xfc0 [ 667.124984][ T9805] ? __pfx_hfsplus_readdir+0x10/0x10 [ 667.124994][ T9805] ? stack_trace_save+0x8e/0xc0 [ 667.125008][ T9805] ? iterate_dir+0x18b/0xb20 [ 667.125015][ T9805] ? trace_lock_acquire+0x85/0xd0 [ 667.125022][ T9805] ? lock_acquire+0x30/0x80 [ 667.125029][ T9805] ? iterate_dir+0x18b/0xb20 [ 667.125037][ T9805] ? down_read_killable+0x1ed/0x4c0 [ 667.125044][ T9805] ? putname+0x154/0x1a0 [ 667.125051][ T9805] ? __pfx_down_read_killable+0x10/0x10 [ 667.125058][ T9805] ? apparmor_file_permission+0x239/0x3e0 [ 667.125069][ T9805] iterate_dir+0x296/0xb20 [ 667.125076][ T9805] __x64_sys_getdents64+0x13c/0x2c0 [ 667.125084][ T9805] ? __pfx___x64_sys_getdents64+0x10/0x10 [ 667.125091][ T9805] ? __x64_sys_openat+0x141/0x200 [ 667.125126][ T9805] ? __pfx_filldir64+0x10/0x10 [ 667.125134][ T9805] ? do_user_addr_fault+0x7fe/0x12f0 [ 667.125143][ T9805] do_syscall_64+0xc9/0x480 [ 667.125151][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 667.125158][ T9805] RIP: 0033:0x7fa8753b2fc9 [ 667.125164][ T9805] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 48 [ 667.125172][ T9805] RSP: 002b:00007ffe96f8e0f8 EFLAGS: 00000217 ORIG_RAX: 00000000000000d9 [ 667.125181][ T9805] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa8753b2fc9 [ 667.125185][ T9805] RDX: 0000000000000400 RSI: 00002000000063c0 RDI: 0000000000000004 [ 667.125190][ T9805] RBP: 00007ffe96f8e110 R08: 00007ffe96f8e110 R09: 00007ffe96f8e110 [ 667.125195][ T9805] R10: 0000000000000000 R11: 0000000000000217 R12: 0000556b1e3b4260 [ 667.125199][ T9805] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 667.125207][ T9805] </TASK> [ 667.125210][ T9805] [ 667.145632][ T9805] Allocated by task 9805: [ 667.145991][ T9805] kasan_save_stack+0x20/0x40 [ 667.146352][ T9805] kasan_save_track+0x14/0x30 [ 667.146717][ T9805] __kasan_kmalloc+0xaa/0xb0 [ 667.147065][ T9805] __kmalloc_noprof+0x205/0x550 [ 667.147448][ T9805] hfsplus_find_init+0x95/0x1f0 [ 667.147813][ T9805] hfsplus_readdir+0x220/0xfc0 [ 667.148174][ T9805] iterate_dir+0x296/0xb20 [ 667.148549][ T9805] __x64_sys_getdents64+0x13c/0x2c0 [ 667.148937][ T9805] do_syscall_64+0xc9/0x480 [ 667.149291][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 667.149809][ T9805] [ 667.150030][ T9805] The buggy address belongs to the object at ffff88802592f000 [ 667.150030][ T9805] which belongs to the cache kmalloc-2k of size 2048 [ 667.151282][ T9805] The buggy address is located 0 bytes to the right of [ 667.151282][ T9805] allocated 1036-byte region [ffff88802592f000, ffff88802592f40c) [ 667.1 ---truncated---
CVE-2025-38712 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-27 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hfsplus: don't use BUG_ON() in hfsplus_create_attributes_file() When the volume header contains erroneous values that do not reflect the actual state of the filesystem, hfsplus_fill_super() assumes that the attributes file is not yet created, which later results in hitting BUG_ON() when hfsplus_create_attributes_file() is called. Replace this BUG_ON() with -EIO error with a message to suggest running fsck tool.
CVE-2025-38708 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-27 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drbd: add missing kref_get in handle_write_conflicts With `two-primaries` enabled, DRBD tries to detect "concurrent" writes and handle write conflicts, so that even if you write to the same sector simultaneously on both nodes, they end up with the identical data once the writes are completed. In handling "superseeded" writes, we forgot a kref_get, resulting in a premature drbd_destroy_device and use after free, and further to kernel crashes with symptoms. Relevance: No one should use DRBD as a random data generator, and apparently all users of "two-primaries" handle concurrent writes correctly on layer up. That is cluster file systems use some distributed lock manager, and live migration in virtualization environments stops writes on one node before starting writes on the other node. Which means that other than for "test cases", this code path is never taken in real life. FYI, in DRBD 9, things are handled differently nowadays. We still detect "write conflicts", but no longer try to be smart about them. We decided to disconnect hard instead: upper layers must not submit concurrent writes. If they do, that's their fault.
CVE-2026-21509 1 Microsoft 7 365 Apps, Office, Office 2016 and 4 more 2026-01-27 7.8 High
Reliance on untrusted inputs in a security decision in Microsoft Office allows an unauthorized attacker to bypass a security feature locally.