| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
gve: Implement gettimex64 with -EOPNOTSUPP
gve implemented a ptp_clock for sole use of do_aux_work at this time.
ptp_clock_gettime() and ptp_sys_offset() assume every ptp_clock has
implemented either gettimex64 or gettime64. Stub gettimex64 and return
-EOPNOTSUPP to prevent NULL dereferencing. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: int3472: Fix double free of GPIO device during unregister
regulator_unregister() already frees the associated GPIO device. On
ThinkPad X9 (Lunar Lake), this causes a double free issue that leads to
random failures when other drivers (typically Intel THC) attempt to
allocate interrupts. The root cause is that the reference count of the
pinctrl_intel_platform module unexpectedly drops to zero when this
driver defers its probe.
This behavior can also be reproduced by unloading the module directly.
Fix the issue by removing the redundant release of the GPIO device
during regulator unregistration. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Don't overflow during division for dirty tracking
If pgshift is 63 then BITS_PER_TYPE(*bitmap->bitmap) * pgsize will overflow
to 0 and this triggers divide by 0.
In this case the index should just be 0, so reorganize things to divide
by shift and avoid hitting any overflows. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Define actions for the new time_deleg FATTR4 attributes
NFSv4 clients won't send legitimate GETATTR requests for these new
attributes because they are intended to be used only with CB_GETATTR
and SETATTR. But NFSD has to do something besides crashing if it
ever sees a GETATTR request that queries these attributes.
RFC 8881 Section 18.7.3 states:
> The server MUST return a value for each attribute that the client
> requests if the attribute is supported by the server for the
> target file system. If the server does not support a particular
> attribute on the target file system, then it MUST NOT return the
> attribute value and MUST NOT set the attribute bit in the result
> bitmap. The server MUST return an error if it supports an
> attribute on the target but cannot obtain its value. In that case,
> no attribute values will be returned.
Further, RFC 9754 Section 5 states:
> These new attributes are invalid to be used with GETATTR, VERIFY,
> and NVERIFY, and they can only be used with CB_GETATTR and SETATTR
> by a client holding an appropriate delegation.
Thus there does not appear to be a specific server response mandated
by specification. Taking the guidance that querying these attributes
via GETATTR is "invalid", NFSD will return nfserr_inval, failing the
request entirely. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential cfid UAF in smb2_query_info_compound
When smb2_query_info_compound() retries, a previously allocated cfid may
have been freed in the first attempt.
Because cfid wasn't reset on replay, later cleanup could act on a stale
pointer, leading to a potential use-after-free.
Reinitialize cfid to NULL under the replay label.
Example trace (trimmed):
refcount_t: underflow; use-after-free.
WARNING: CPU: 1 PID: 11224 at ../lib/refcount.c:28 refcount_warn_saturate+0x9c/0x110
[...]
RIP: 0010:refcount_warn_saturate+0x9c/0x110
[...]
Call Trace:
<TASK>
smb2_query_info_compound+0x29c/0x5c0 [cifs f90b72658819bd21c94769b6a652029a07a7172f]
? step_into+0x10d/0x690
? __legitimize_path+0x28/0x60
smb2_queryfs+0x6a/0xf0 [cifs f90b72658819bd21c94769b6a652029a07a7172f]
smb311_queryfs+0x12d/0x140 [cifs f90b72658819bd21c94769b6a652029a07a7172f]
? kmem_cache_alloc+0x18a/0x340
? getname_flags+0x46/0x1e0
cifs_statfs+0x9f/0x2b0 [cifs f90b72658819bd21c94769b6a652029a07a7172f]
statfs_by_dentry+0x67/0x90
vfs_statfs+0x16/0xd0
user_statfs+0x54/0xa0
__do_sys_statfs+0x20/0x50
do_syscall_64+0x58/0x80 |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/intel/uncore: Fix reference count leak in snr_uncore_mmio_map()
pci_get_device() will increase the reference count for the returned
pci_dev, so snr_uncore_get_mc_dev() will return a pci_dev with its
reference count increased. We need to call pci_dev_put() to decrease the
reference count. Let's add the missing pci_dev_put(). |
| In the Linux kernel, the following vulnerability has been resolved:
dm: verity-loadpin: Only trust verity targets with enforcement
Verity targets can be configured to ignore corrupted data blocks.
LoadPin must only trust verity targets that are configured to
perform some kind of enforcement when data corruption is detected,
like returning an error, restarting the system or triggering a
panic. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gud: Fix UBSAN warning
UBSAN complains about invalid value for bool:
[ 101.165172] [drm] Initialized gud 1.0.0 20200422 for 2-3.2:1.0 on minor 1
[ 101.213360] gud 2-3.2:1.0: [drm] fb1: guddrmfb frame buffer device
[ 101.213426] usbcore: registered new interface driver gud
[ 101.989431] ================================================================================
[ 101.989441] UBSAN: invalid-load in linux/include/linux/iosys-map.h:253:9
[ 101.989447] load of value 121 is not a valid value for type '_Bool'
[ 101.989451] CPU: 1 PID: 455 Comm: kworker/1:6 Not tainted 5.18.0-rc5-gud-5.18-rc5 #3
[ 101.989456] Hardware name: Hewlett-Packard HP EliteBook 820 G1/1991, BIOS L71 Ver. 01.44 04/12/2018
[ 101.989459] Workqueue: events_long gud_flush_work [gud]
[ 101.989471] Call Trace:
[ 101.989474] <TASK>
[ 101.989479] dump_stack_lvl+0x49/0x5f
[ 101.989488] dump_stack+0x10/0x12
[ 101.989493] ubsan_epilogue+0x9/0x3b
[ 101.989498] __ubsan_handle_load_invalid_value.cold+0x44/0x49
[ 101.989504] dma_buf_vmap.cold+0x38/0x3d
[ 101.989511] ? find_busiest_group+0x48/0x300
[ 101.989520] drm_gem_shmem_vmap+0x76/0x1b0 [drm_shmem_helper]
[ 101.989528] drm_gem_shmem_object_vmap+0x9/0xb [drm_shmem_helper]
[ 101.989535] drm_gem_vmap+0x26/0x60 [drm]
[ 101.989594] drm_gem_fb_vmap+0x47/0x150 [drm_kms_helper]
[ 101.989630] gud_prep_flush+0xc1/0x710 [gud]
[ 101.989639] ? _raw_spin_lock+0x17/0x40
[ 101.989648] gud_flush_work+0x1e0/0x430 [gud]
[ 101.989653] ? __switch_to+0x11d/0x470
[ 101.989664] process_one_work+0x21f/0x3f0
[ 101.989673] worker_thread+0x200/0x3e0
[ 101.989679] ? rescuer_thread+0x390/0x390
[ 101.989684] kthread+0xfd/0x130
[ 101.989690] ? kthread_complete_and_exit+0x20/0x20
[ 101.989696] ret_from_fork+0x22/0x30
[ 101.989706] </TASK>
[ 101.989708] ================================================================================
The source of this warning is in iosys_map_clear() called from
dma_buf_vmap(). It conditionally sets values based on map->is_iomem. The
iosys_map variables are allocated uninitialized on the stack leading to
->is_iomem having all kinds of values and not only 0/1.
Fix this by zeroing the iosys_map variables. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: hugetlb: fix UAF in hugetlb_handle_userfault
The vma_lock and hugetlb_fault_mutex are dropped before handling userfault
and reacquire them again after handle_userfault(), but reacquire the
vma_lock could lead to UAF[1,2] due to the following race,
hugetlb_fault
hugetlb_no_page
/*unlock vma_lock */
hugetlb_handle_userfault
handle_userfault
/* unlock mm->mmap_lock*/
vm_mmap_pgoff
do_mmap
mmap_region
munmap_vma_range
/* clean old vma */
/* lock vma_lock again <--- UAF */
/* unlock vma_lock */
Since the vma_lock will unlock immediately after
hugetlb_handle_userfault(), let's drop the unneeded lock and unlock in
hugetlb_handle_userfault() to fix the issue.
[1] https://lore.kernel.org/linux-mm/000000000000d5e00a05e834962e@google.com/
[2] https://lore.kernel.org/linux-mm/20220921014457.1668-1-liuzixian4@huawei.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Free released resource after coalescing
release_resource() doesn't actually free the resource or resource list
entry so free the resource list entry to avoid a leak. |
| In the Linux kernel, the following vulnerability has been resolved:
um: vector: Fix memory leak in vector_config
If the return value of the uml_parse_vector_ifspec function is NULL,
we should call kfree(params) to prevent memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/vfio-ap: fix memory leak in vfio_ap device driver
The device release callback function invoked to release the matrix device
uses the dev_get_drvdata(device *dev) function to retrieve the
pointer to the vfio_matrix_dev object in order to free its storage. The
problem is, this object is not stored as drvdata with the device; since the
kfree function will accept a NULL pointer, the memory for the
vfio_matrix_dev object is never freed.
Since the device being released is contained within the vfio_matrix_dev
object, the container_of macro will be used to retrieve its pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix ioremap issues in lpfc_sli4_pci_mem_setup()
When if_type equals zero and pci_resource_start(pdev, PCI_64BIT_BAR4)
returns false, drbl_regs_memmap_p is not remapped. This passes a NULL
pointer to iounmap(), which can trigger a WARN() on certain arches.
When if_type equals six and pci_resource_start(pdev, PCI_64BIT_BAR4)
returns true, drbl_regs_memmap_p may has been remapped and
ctrl_regs_memmap_p is not remapped. This is a resource leak and passes a
NULL pointer to iounmap().
To fix these issues, we need to add null checks before iounmap(), and
change some goto labels. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: VMX: Fix crash due to uninitialized current_vmcs
KVM enables 'Enlightened VMCS' and 'Enlightened MSR Bitmap' when running as
a nested hypervisor on top of Hyper-V. When MSR bitmap is updated,
evmcs_touch_msr_bitmap function uses current_vmcs per-cpu variable to mark
that the msr bitmap was changed.
vmx_vcpu_create() modifies the msr bitmap via vmx_disable_intercept_for_msr
-> vmx_msr_bitmap_l01_changed which in the end calls this function. The
function checks for current_vmcs if it is null but the check is
insufficient because current_vmcs is not initialized. Because of this, the
code might incorrectly write to the structure pointed by current_vmcs value
left by another task. Preemption is not disabled, the current task can be
preempted and moved to another CPU while current_vmcs is accessed multiple
times from evmcs_touch_msr_bitmap() which leads to crash.
The manipulation of MSR bitmaps by callers happens only for vmcs01 so the
solution is to use vmx->vmcs01.vmcs instead of current_vmcs.
BUG: kernel NULL pointer dereference, address: 0000000000000338
PGD 4e1775067 P4D 0
Oops: 0002 [#1] PREEMPT SMP NOPTI
...
RIP: 0010:vmx_msr_bitmap_l01_changed+0x39/0x50 [kvm_intel]
...
Call Trace:
vmx_disable_intercept_for_msr+0x36/0x260 [kvm_intel]
vmx_vcpu_create+0xe6/0x540 [kvm_intel]
kvm_arch_vcpu_create+0x1d1/0x2e0 [kvm]
kvm_vm_ioctl_create_vcpu+0x178/0x430 [kvm]
kvm_vm_ioctl+0x53f/0x790 [kvm]
__x64_sys_ioctl+0x8a/0xc0
do_syscall_64+0x5c/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
spi: atmel-quadspi: Free resources even if runtime resume failed in .remove()
An early error exit in atmel_qspi_remove() doesn't prevent the device
unbind. So this results in an spi controller with an unbound parent
and unmapped register space (because devm_ioremap_resource() is undone).
So using the remaining spi controller probably results in an oops.
Instead unregister the controller unconditionally and only skip hardware
access and clk disable.
Also add a warning about resume failing and return zero unconditionally.
The latter has the only effect to suppress a less helpful error message by
the spi core. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "f2fs: fix to do sanity check on extent cache correctly"
syzbot reports a f2fs bug as below:
UBSAN: array-index-out-of-bounds in fs/f2fs/f2fs.h:3275:19
index 1409 is out of range for type '__le32[923]' (aka 'unsigned int[923]')
Call Trace:
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:217 [inline]
__ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348
inline_data_addr fs/f2fs/f2fs.h:3275 [inline]
__recover_inline_status fs/f2fs/inode.c:113 [inline]
do_read_inode fs/f2fs/inode.c:480 [inline]
f2fs_iget+0x4730/0x48b0 fs/f2fs/inode.c:604
f2fs_fill_super+0x640e/0x80c0 fs/f2fs/super.c:4601
mount_bdev+0x276/0x3b0 fs/super.c:1391
legacy_get_tree+0xef/0x190 fs/fs_context.c:611
vfs_get_tree+0x8c/0x270 fs/super.c:1519
do_new_mount+0x28f/0xae0 fs/namespace.c:3335
do_mount fs/namespace.c:3675 [inline]
__do_sys_mount fs/namespace.c:3884 [inline]
__se_sys_mount+0x2d9/0x3c0 fs/namespace.c:3861
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The issue was bisected to:
commit d48a7b3a72f121655d95b5157c32c7d555e44c05
Author: Chao Yu <chao@kernel.org>
Date: Mon Jan 9 03:49:20 2023 +0000
f2fs: fix to do sanity check on extent cache correctly
The root cause is we applied both v1 and v2 of the patch, v2 is the right
fix, so it needs to revert v1 in order to fix reported issue.
v1:
commit d48a7b3a72f1 ("f2fs: fix to do sanity check on extent cache correctly")
https://lore.kernel.org/lkml/20230109034920.492914-1-chao@kernel.org/
v2:
commit 269d11948100 ("f2fs: fix to do sanity check on extent cache correctly")
https://lore.kernel.org/lkml/20230207134808.1827869-1-chao@kernel.org/ |
| In the Linux kernel, the following vulnerability has been resolved:
regmap-irq: Fix out-of-bounds access when allocating config buffers
When allocating the 2D array for handling IRQ type registers in
regmap_add_irq_chip_fwnode(), the intent is to allocate a matrix
with num_config_bases rows and num_config_regs columns.
This is currently handled by allocating a buffer to hold a pointer for
each row (i.e. num_config_bases). After that, the logic attempts to
allocate the memory required to hold the register configuration for
each row. However, instead of doing this allocation for each row
(i.e. num_config_bases allocations), the logic erroneously does this
allocation num_config_regs number of times.
This scenario can lead to out-of-bounds accesses when num_config_regs
is greater than num_config_bases. Fix this by updating the terminating
condition of the loop that allocates the memory for holding the register
configuration to allocate memory only for each row in the matrix.
Amit Pundir reported a crash that was occurring on his db845c device
due to memory corruption (see "Closes" tag for Amit's report). The KASAN
report below helped narrow it down to this issue:
[ 14.033877][ T1] ==================================================================
[ 14.042507][ T1] BUG: KASAN: invalid-access in regmap_add_irq_chip_fwnode+0x594/0x1364
[ 14.050796][ T1] Write of size 8 at addr 06ffff8081021850 by task init/1
[ 14.242004][ T1] The buggy address belongs to the object at ffffff8081021850
[ 14.242004][ T1] which belongs to the cache kmalloc-8 of size 8
[ 14.255669][ T1] The buggy address is located 0 bytes inside of
[ 14.255669][ T1] 8-byte region [ffffff8081021850, ffffff8081021858) |
| In the Linux kernel, the following vulnerability has been resolved:
virt/coco/sev-guest: Double-buffer messages
The encryption algorithms read and write directly to shared unencrypted
memory, which may leak information as well as permit the host to tamper
with the message integrity. Instead, copy whole messages in or out as
needed before doing any computation on them. |
| In the Linux kernel, the following vulnerability has been resolved:
misc: pci_endpoint_test: Fix pci_endpoint_test_{copy,write,read}() panic
The dma_map_single() doesn't permit zero length mapping. It causes a follow
panic.
A panic was reported on arm64:
[ 60.137988] ------------[ cut here ]------------
[ 60.142630] kernel BUG at kernel/dma/swiotlb.c:624!
[ 60.147508] Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
[ 60.152992] Modules linked in: dw_hdmi_cec crct10dif_ce simple_bridge rcar_fdp1 vsp1 rcar_vin videobuf2_vmalloc rcar_csi2 v4l
2_mem2mem videobuf2_dma_contig videobuf2_memops pci_endpoint_test videobuf2_v4l2 videobuf2_common rcar_fcp v4l2_fwnode v4l2_asyn
c videodev mc gpio_bd9571mwv max9611 pwm_rcar ccree at24 authenc libdes phy_rcar_gen3_usb3 usb_dmac display_connector pwm_bl
[ 60.186252] CPU: 0 PID: 508 Comm: pcitest Not tainted 6.0.0-rc1rpci-dev+ #237
[ 60.193387] Hardware name: Renesas Salvator-X 2nd version board based on r8a77951 (DT)
[ 60.201302] pstate: 00000005 (nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 60.208263] pc : swiotlb_tbl_map_single+0x2c0/0x590
[ 60.213149] lr : swiotlb_map+0x88/0x1f0
[ 60.216982] sp : ffff80000a883bc0
[ 60.220292] x29: ffff80000a883bc0 x28: 0000000000000000 x27: 0000000000000000
[ 60.227430] x26: 0000000000000000 x25: ffff0004c0da20d0 x24: ffff80000a1f77c0
[ 60.234567] x23: 0000000000000002 x22: 0001000040000010 x21: 000000007a000000
[ 60.241703] x20: 0000000000200000 x19: 0000000000000000 x18: 0000000000000000
[ 60.248840] x17: 0000000000000000 x16: 0000000000000000 x15: ffff0006ff7b9180
[ 60.255977] x14: ffff0006ff7b9180 x13: 0000000000000000 x12: 0000000000000000
[ 60.263113] x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000
[ 60.270249] x8 : 0001000000000010 x7 : ffff0004c6754b20 x6 : 0000000000000000
[ 60.277385] x5 : ffff0004c0da2090 x4 : 0000000000000000 x3 : 0000000000000001
[ 60.284521] x2 : 0000000040000000 x1 : 0000000000000000 x0 : 0000000040000010
[ 60.291658] Call trace:
[ 60.294100] swiotlb_tbl_map_single+0x2c0/0x590
[ 60.298629] swiotlb_map+0x88/0x1f0
[ 60.302115] dma_map_page_attrs+0x188/0x230
[ 60.306299] pci_endpoint_test_ioctl+0x5e4/0xd90 [pci_endpoint_test]
[ 60.312660] __arm64_sys_ioctl+0xa8/0xf0
[ 60.316583] invoke_syscall+0x44/0x108
[ 60.320334] el0_svc_common.constprop.0+0xcc/0xf0
[ 60.325038] do_el0_svc+0x2c/0xb8
[ 60.328351] el0_svc+0x2c/0x88
[ 60.331406] el0t_64_sync_handler+0xb8/0xc0
[ 60.335587] el0t_64_sync+0x18c/0x190
[ 60.339251] Code: 52800013 d2e00414 35fff45c d503201f (d4210000)
[ 60.345344] ---[ end trace 0000000000000000 ]---
To fix it, this patch adds a checking the payload length if it is zero. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/powerplay/psm: Fix memory leak in power state init
Commit 902bc65de0b3 ("drm/amdgpu/powerplay/psm: return an error in power
state init") made the power state init function return early in case of
failure to get an entry from the powerplay table, but it missed to clean up
the allocated memory for the current power state before returning. |