| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An Incorrect Calculation of Buffer Size vulnerability in the routing protocol daemon (rpd) of Juniper Networks Junos OS and Junos OS Evolved allows an adjacent unauthenticated attacker to cause a memory corruption that leads to a rpd crash.
When
the logical interface using a routing instance flaps continuously, specific updates are sent to the jflow/sflow modules. This results in memory corruption, leading to an rpd crash and restart.
Continued receipt of these specific updates will cause a sustained Denial of Service condition.
This issue affects Junos OS:
* All versions before 21.2R3-S9,
* All versions of 21.4,
* All versions of 22.2,
* from 22.4 before 22.4R3-S7,
* from 23.2 before 23.2R2-S3,
* from 23.4 before 23.4R2-S4,
* from 24.2 before 24.2R2.
Junos OS Evolved:
* All versions of 21.2-EVO,
* All versions of 21.4-EVO,
* All versions of 22.2-EVO,
* from 22.4 before 22.4R3-S7-EVO,
* from 23.2 before 23.2R2-S3-EVO,
* from 23.4 before 23.4R2-S4-EVO,
* from 24.2 before 24.2R2-EVO. |
| ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. The BluFi example bundled in ESP-IDF was vulnerable to memory overflows in two areas: Wi-Fi credential handling and Diffie–Hellman key exchange. This vulnerability is fixed in 5.4.1, 5.3.3, 5.1.6, and 5.0.9. |
| openCryptoki is a PKCS#11 library and tools for Linux and AIX. In 3.25.0 and 3.26.0, there is a heap buffer overflow vulnerability in the CKM_ECDH_AES_KEY_WRAP implementation allows an attacker with local access to cause out-of-bounds writes in the host process by supplying a compressed EC public key and invoking C_WrapKey. This can lead to heap corruption, or denial-of-service. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of ICC color management profiles. Prior to version 2.3.1.2, iccDEV has undefined behavior due to a null pointer passed to memcpy() in CIccTagSparseMatrixArray. This issue has been patched in version 2.3.1.2. |
| Out-of-bounds write in Azure Monitor Agent allows an authorized attacker to execute code over a network. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-net: fix overflow inside virtnet_rq_alloc
When the frag just got a page, then may lead to regression on VM.
Specially if the sysctl net.core.high_order_alloc_disable value is 1,
then the frag always get a page when do refill.
Which could see reliable crashes or scp failure (scp a file 100M in size
to VM).
The issue is that the virtnet_rq_dma takes up 16 bytes at the beginning
of a new frag. When the frag size is larger than PAGE_SIZE,
everything is fine. However, if the frag is only one page and the
total size of the buffer and virtnet_rq_dma is larger than one page, an
overflow may occur.
The commit f9dac92ba908 ("virtio_ring: enable premapped mode whatever
use_dma_api") introduced this problem. And we reverted some commits to
fix this in last linux version. Now we try to enable it and fix this
bug directly.
Here, when the frag size is not enough, we reduce the buffer len to fix
this problem. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid online resizing failures due to oversized flex bg
When we online resize an ext4 filesystem with a oversized flexbg_size,
mkfs.ext4 -F -G 67108864 $dev -b 4096 100M
mount $dev $dir
resize2fs $dev 16G
the following WARN_ON is triggered:
==================================================================
WARNING: CPU: 0 PID: 427 at mm/page_alloc.c:4402 __alloc_pages+0x411/0x550
Modules linked in: sg(E)
CPU: 0 PID: 427 Comm: resize2fs Tainted: G E 6.6.0-rc5+ #314
RIP: 0010:__alloc_pages+0x411/0x550
Call Trace:
<TASK>
__kmalloc_large_node+0xa2/0x200
__kmalloc+0x16e/0x290
ext4_resize_fs+0x481/0xd80
__ext4_ioctl+0x1616/0x1d90
ext4_ioctl+0x12/0x20
__x64_sys_ioctl+0xf0/0x150
do_syscall_64+0x3b/0x90
==================================================================
This is because flexbg_size is too large and the size of the new_group_data
array to be allocated exceeds MAX_ORDER. Currently, the minimum value of
MAX_ORDER is 8, the minimum value of PAGE_SIZE is 4096, the corresponding
maximum number of groups that can be allocated is:
(PAGE_SIZE << MAX_ORDER) / sizeof(struct ext4_new_group_data) ≈ 21845
And the value that is down-aligned to the power of 2 is 16384. Therefore,
this value is defined as MAX_RESIZE_BG, and the number of groups added
each time does not exceed this value during resizing, and is added multiple
times to complete the online resizing. The difference is that the metadata
in a flex_bg may be more dispersed. |
| In MIFF image processing in ImageMagick before 7.1.1-44, image depth is mishandled after SetQuantumFormat is used. |
| In multispectral MIFF image processing in ImageMagick before 7.1.1-44, packet_size is mishandled (related to the rendering of all channels in an arbitrary order). |
| AIS-catcher is a multi-platform AIS receiver. Prior to version 0.64, a heap buffer overflow vulnerability has been identified in the AIS::Message class of AIS-catcher. This vulnerability allows an attacker to write approximately 1KB of arbitrary data into a 128-byte buffer. This issue has been patched in version 0.64. |
| A vulnerability has been identified in the GRUB (Grand Unified Bootloader) component. This flaw occurs because the bootloader mishandles string conversion when reading information from a USB device, allowing an attacker to exploit inconsistent length values. A local attacker can connect a maliciously configured USB device during the boot sequence to trigger this issue. A successful exploitation may lead GRUB to crash, leading to a Denial of Service. Data corruption may be also possible, although given the complexity of the exploit the impact is most likely limited. |
| IBM DB2 High Performance Unload 6.1.0.3, 5.1.0.1, 6.1.0.2, 6.5, 6.5.0.0 IF1, 6.1.0.1, 6.1, 5.1, 6.1.0.3, 5.1.0.1, 6.1.0.2, 6.5, 6.5.0.0 IF1, 6.1.0.1, 6.1, 5.1, 6.1.0.3, 5.1.0.1, 6.1.0.2, 6.5, 6.5.0.0 IF1, 6.1.0.1, 6.1, 5.1, 6.1.0.3, 5.1.0.1, 6.1.0.2, 6.5, 6.5.0.0 IF1, 6.1.0.1, 6.1, and 5.1 could allow an authenticated user to cause the program to crash due to the incorrect calculation of a buffer size. |
| Memory corruption during PlayReady APP usecase while processing TA commands. |
| Memory corruption while processing a GP command response. |
| An invalid memory write issue in Jasper-Software Jasper v.4.1.1 and before allows a local attacker to execute arbitrary code. |
| Sudo before 1.9.15 might allow row hammer attacks (for authentication bypass or privilege escalation) because application logic sometimes is based on not equaling an error value (instead of equaling a success value), and because the values do not resist flips of a single bit. |
| An out-of-bounds write vulnerability exists in the sopen_FAMOS_read functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .famos file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gem: Fix Virtual Memory mapping boundaries calculation
Calculating the size of the mapped area as the lesser value
between the requested size and the actual size does not consider
the partial mapping offset. This can cause page fault access.
Fix the calculation of the starting and ending addresses, the
total size is now deduced from the difference between the end and
start addresses.
Additionally, the calculations have been rewritten in a clearer
and more understandable form.
[Joonas: Add Requires: tag]
Requires: 60a2066c5005 ("drm/i915/gem: Adjust vma offset for framebuffer mmap offset")
(cherry picked from commit 97b6784753da06d9d40232328efc5c5367e53417) |
| In PHP from 8.1.* before 8.1.32, from 8.2.* before 8.2.28, from 8.3.* before 8.3.19, from 8.4.* before 8.4.5, when parsing HTTP redirect in the response to an HTTP request, there is currently limit on the location value size caused by limited size of the location buffer to 1024. However as per RFC9110, the limit is recommended to be 8000. This may lead to incorrect URL truncation and redirecting to a wrong location. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-pci: fix freeing of the HMB descriptor table
The HMB descriptor table is sized to the maximum number of descriptors
that could be used for a given device, but __nvme_alloc_host_mem could
break out of the loop earlier on memory allocation failure and end up
using less descriptors than planned for, which leads to an incorrect
size passed to dma_free_coherent.
In practice this was not showing up because the number of descriptors
tends to be low and the dma coherent allocator always allocates and
frees at least a page. |