| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: avoid soft lockup in __kmemleak_do_cleanup()
A soft lockup warning was observed on a relative small system x86-64
system with 16 GB of memory when running a debug kernel with kmemleak
enabled.
watchdog: BUG: soft lockup - CPU#8 stuck for 33s! [kworker/8:1:134]
The test system was running a workload with hot unplug happening in
parallel. Then kemleak decided to disable itself due to its inability to
allocate more kmemleak objects. The debug kernel has its
CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE set to 40,000.
The soft lockup happened in kmemleak_do_cleanup() when the existing
kmemleak objects were being removed and deleted one-by-one in a loop via a
workqueue. In this particular case, there are at least 40,000 objects
that need to be processed and given the slowness of a debug kernel and the
fact that a raw_spinlock has to be acquired and released in
__delete_object(), it could take a while to properly handle all these
objects.
As kmemleak has been disabled in this case, the object removal and
deletion process can be further optimized as locking isn't really needed.
However, it is probably not worth the effort to optimize for such an edge
case that should rarely happen. So the simple solution is to call
cond_resched() at periodic interval in the iteration loop to avoid soft
lockup. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: light: as73211: Ensure buffer holes are zeroed
Given that the buffer is copied to a kfifo that ultimately user space
can read, ensure we zero it. |
| In the Linux kernel, the following vulnerability has been resolved:
tls: fix handling of zero-length records on the rx_list
Each recvmsg() call must process either
- only contiguous DATA records (any number of them)
- one non-DATA record
If the next record has different type than what has already been
processed we break out of the main processing loop. If the record
has already been decrypted (which may be the case for TLS 1.3 where
we don't know type until decryption) we queue the pending record
to the rx_list. Next recvmsg() will pick it up from there.
Queuing the skb to rx_list after zero-copy decrypt is not possible,
since in that case we decrypted directly to the user space buffer,
and we don't have an skb to queue (darg.skb points to the ciphertext
skb for access to metadata like length).
Only data records are allowed zero-copy, and we break the processing
loop after each non-data record. So we should never zero-copy and
then find out that the record type has changed. The corner case
we missed is when the initial record comes from rx_list, and it's
zero length. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: fix slab-out-of-bounds in hfs_bnode_read()
This patch introduces is_bnode_offset_valid() method that checks
the requested offset value. Also, it introduces
check_and_correct_requested_length() method that checks and
correct the requested length (if it is necessary). These methods
are used in hfs_bnode_read(), hfs_bnode_write(), hfs_bnode_clear(),
hfs_bnode_copy(), and hfs_bnode_move() with the goal to prevent
the access out of allocated memory and triggering the crash. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc()
The hfsplus_readdir() method is capable to crash by calling
hfsplus_uni2asc():
[ 667.121659][ T9805] ==================================================================
[ 667.122651][ T9805] BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0x902/0xa10
[ 667.123627][ T9805] Read of size 2 at addr ffff88802592f40c by task repro/9805
[ 667.124578][ T9805]
[ 667.124876][ T9805] CPU: 3 UID: 0 PID: 9805 Comm: repro Not tainted 6.16.0-rc3 #1 PREEMPT(full)
[ 667.124886][ T9805] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 667.124890][ T9805] Call Trace:
[ 667.124893][ T9805] <TASK>
[ 667.124896][ T9805] dump_stack_lvl+0x10e/0x1f0
[ 667.124911][ T9805] print_report+0xd0/0x660
[ 667.124920][ T9805] ? __virt_addr_valid+0x81/0x610
[ 667.124928][ T9805] ? __phys_addr+0xe8/0x180
[ 667.124934][ T9805] ? hfsplus_uni2asc+0x902/0xa10
[ 667.124942][ T9805] kasan_report+0xc6/0x100
[ 667.124950][ T9805] ? hfsplus_uni2asc+0x902/0xa10
[ 667.124959][ T9805] hfsplus_uni2asc+0x902/0xa10
[ 667.124966][ T9805] ? hfsplus_bnode_read+0x14b/0x360
[ 667.124974][ T9805] hfsplus_readdir+0x845/0xfc0
[ 667.124984][ T9805] ? __pfx_hfsplus_readdir+0x10/0x10
[ 667.124994][ T9805] ? stack_trace_save+0x8e/0xc0
[ 667.125008][ T9805] ? iterate_dir+0x18b/0xb20
[ 667.125015][ T9805] ? trace_lock_acquire+0x85/0xd0
[ 667.125022][ T9805] ? lock_acquire+0x30/0x80
[ 667.125029][ T9805] ? iterate_dir+0x18b/0xb20
[ 667.125037][ T9805] ? down_read_killable+0x1ed/0x4c0
[ 667.125044][ T9805] ? putname+0x154/0x1a0
[ 667.125051][ T9805] ? __pfx_down_read_killable+0x10/0x10
[ 667.125058][ T9805] ? apparmor_file_permission+0x239/0x3e0
[ 667.125069][ T9805] iterate_dir+0x296/0xb20
[ 667.125076][ T9805] __x64_sys_getdents64+0x13c/0x2c0
[ 667.125084][ T9805] ? __pfx___x64_sys_getdents64+0x10/0x10
[ 667.125091][ T9805] ? __x64_sys_openat+0x141/0x200
[ 667.125126][ T9805] ? __pfx_filldir64+0x10/0x10
[ 667.125134][ T9805] ? do_user_addr_fault+0x7fe/0x12f0
[ 667.125143][ T9805] do_syscall_64+0xc9/0x480
[ 667.125151][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 667.125158][ T9805] RIP: 0033:0x7fa8753b2fc9
[ 667.125164][ T9805] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 48
[ 667.125172][ T9805] RSP: 002b:00007ffe96f8e0f8 EFLAGS: 00000217 ORIG_RAX: 00000000000000d9
[ 667.125181][ T9805] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa8753b2fc9
[ 667.125185][ T9805] RDX: 0000000000000400 RSI: 00002000000063c0 RDI: 0000000000000004
[ 667.125190][ T9805] RBP: 00007ffe96f8e110 R08: 00007ffe96f8e110 R09: 00007ffe96f8e110
[ 667.125195][ T9805] R10: 0000000000000000 R11: 0000000000000217 R12: 0000556b1e3b4260
[ 667.125199][ T9805] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 667.125207][ T9805] </TASK>
[ 667.125210][ T9805]
[ 667.145632][ T9805] Allocated by task 9805:
[ 667.145991][ T9805] kasan_save_stack+0x20/0x40
[ 667.146352][ T9805] kasan_save_track+0x14/0x30
[ 667.146717][ T9805] __kasan_kmalloc+0xaa/0xb0
[ 667.147065][ T9805] __kmalloc_noprof+0x205/0x550
[ 667.147448][ T9805] hfsplus_find_init+0x95/0x1f0
[ 667.147813][ T9805] hfsplus_readdir+0x220/0xfc0
[ 667.148174][ T9805] iterate_dir+0x296/0xb20
[ 667.148549][ T9805] __x64_sys_getdents64+0x13c/0x2c0
[ 667.148937][ T9805] do_syscall_64+0xc9/0x480
[ 667.149291][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 667.149809][ T9805]
[ 667.150030][ T9805] The buggy address belongs to the object at ffff88802592f000
[ 667.150030][ T9805] which belongs to the cache kmalloc-2k of size 2048
[ 667.151282][ T9805] The buggy address is located 0 bytes to the right of
[ 667.151282][ T9805] allocated 1036-byte region [ffff88802592f000, ffff88802592f40c)
[ 667.1
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: don't use BUG_ON() in hfsplus_create_attributes_file()
When the volume header contains erroneous values that do not reflect
the actual state of the filesystem, hfsplus_fill_super() assumes that
the attributes file is not yet created, which later results in hitting
BUG_ON() when hfsplus_create_attributes_file() is called. Replace this
BUG_ON() with -EIO error with a message to suggest running fsck tool. |
| In the Linux kernel, the following vulnerability has been resolved:
drbd: add missing kref_get in handle_write_conflicts
With `two-primaries` enabled, DRBD tries to detect "concurrent" writes
and handle write conflicts, so that even if you write to the same sector
simultaneously on both nodes, they end up with the identical data once
the writes are completed.
In handling "superseeded" writes, we forgot a kref_get,
resulting in a premature drbd_destroy_device and use after free,
and further to kernel crashes with symptoms.
Relevance: No one should use DRBD as a random data generator, and apparently
all users of "two-primaries" handle concurrent writes correctly on layer up.
That is cluster file systems use some distributed lock manager,
and live migration in virtualization environments stops writes on one node
before starting writes on the other node.
Which means that other than for "test cases",
this code path is never taken in real life.
FYI, in DRBD 9, things are handled differently nowadays. We still detect
"write conflicts", but no longer try to be smart about them.
We decided to disconnect hard instead: upper layers must not submit concurrent
writes. If they do, that's their fault. |
| An integer overflow flaw was found in the Linux kernel's create_elf_tables() function. An unprivileged local user with access to SUID (or otherwise privileged) binary could use this flaw to escalate their privileges on the system. Kernel versions 2.6.x, 3.10.x and 4.14.x are believed to be vulnerable. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Regular file corruption check
The reproducer builds a corrupted file on disk with a negative i_size value.
Add a check when opening this file to avoid subsequent operation failures. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: upper bound check of tree index in dbAllocAG
When computing the tree index in dbAllocAG, we never check if we are
out of bounds realative to the size of the stree.
This could happen in a scenario where the filesystem metadata are
corrupted. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Do not include stack ptr register in precision backtracking bookkeeping
Yi Lai reported an issue ([1]) where the following warning appears
in kernel dmesg:
[ 60.643604] verifier backtracking bug
[ 60.643635] WARNING: CPU: 10 PID: 2315 at kernel/bpf/verifier.c:4302 __mark_chain_precision+0x3a6c/0x3e10
[ 60.648428] Modules linked in: bpf_testmod(OE)
[ 60.650471] CPU: 10 UID: 0 PID: 2315 Comm: test_progs Tainted: G OE 6.15.0-rc4-gef11287f8289-dirty #327 PREEMPT(full)
[ 60.654385] Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
[ 60.656682] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 60.660475] RIP: 0010:__mark_chain_precision+0x3a6c/0x3e10
[ 60.662814] Code: 5a 30 84 89 ea e8 c4 d9 01 00 80 3d 3e 7d d8 04 00 0f 85 60 fa ff ff c6 05 31 7d d8 04
01 48 c7 c7 00 58 30 84 e8 c4 06 a5 ff <0f> 0b e9 46 fa ff ff 48 ...
[ 60.668720] RSP: 0018:ffff888116cc7298 EFLAGS: 00010246
[ 60.671075] RAX: 54d70e82dfd31900 RBX: ffff888115b65e20 RCX: 0000000000000000
[ 60.673659] RDX: 0000000000000001 RSI: 0000000000000004 RDI: 00000000ffffffff
[ 60.676241] RBP: 0000000000000400 R08: ffff8881f6f23bd3 R09: 1ffff1103ede477a
[ 60.678787] R10: dffffc0000000000 R11: ffffed103ede477b R12: ffff888115b60ae8
[ 60.681420] R13: 1ffff11022b6cbc4 R14: 00000000fffffff2 R15: 0000000000000001
[ 60.684030] FS: 00007fc2aedd80c0(0000) GS:ffff88826fa8a000(0000) knlGS:0000000000000000
[ 60.686837] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 60.689027] CR2: 000056325369e000 CR3: 000000011088b002 CR4: 0000000000370ef0
[ 60.691623] Call Trace:
[ 60.692821] <TASK>
[ 60.693960] ? __pfx_verbose+0x10/0x10
[ 60.695656] ? __pfx_disasm_kfunc_name+0x10/0x10
[ 60.697495] check_cond_jmp_op+0x16f7/0x39b0
[ 60.699237] do_check+0x58fa/0xab10
...
Further analysis shows the warning is at line 4302 as below:
4294 /* static subprog call instruction, which
4295 * means that we are exiting current subprog,
4296 * so only r1-r5 could be still requested as
4297 * precise, r0 and r6-r10 or any stack slot in
4298 * the current frame should be zero by now
4299 */
4300 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4301 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4302 WARN_ONCE(1, "verifier backtracking bug");
4303 return -EFAULT;
4304 }
With the below test (also in the next patch):
__used __naked static void __bpf_jmp_r10(void)
{
asm volatile (
"r2 = 2314885393468386424 ll;"
"goto +0;"
"if r2 <= r10 goto +3;"
"if r1 >= -1835016 goto +0;"
"if r2 <= 8 goto +0;"
"if r3 <= 0 goto +0;"
"exit;"
::: __clobber_all);
}
SEC("?raw_tp")
__naked void bpf_jmp_r10(void)
{
asm volatile (
"r3 = 0 ll;"
"call __bpf_jmp_r10;"
"r0 = 0;"
"exit;"
::: __clobber_all);
}
The following is the verifier failure log:
0: (18) r3 = 0x0 ; R3_w=0
2: (85) call pc+2
caller:
R10=fp0
callee:
frame1: R1=ctx() R3_w=0 R10=fp0
5: frame1: R1=ctx() R3_w=0 R10=fp0
; asm volatile (" \ @ verifier_precision.c:184
5: (18) r2 = 0x20202000256c6c78 ; frame1: R2_w=0x20202000256c6c78
7: (05) goto pc+0
8: (bd) if r2 <= r10 goto pc+3 ; frame1: R2_w=0x20202000256c6c78 R10=fp0
9: (35) if r1 >= 0xffe3fff8 goto pc+0 ; frame1: R1=ctx()
10: (b5) if r2 <= 0x8 goto pc+0
mark_precise: frame1: last_idx 10 first_idx 0 subseq_idx -1
mark_precise: frame1: regs=r2 stack= before 9: (35) if r1 >= 0xffe3fff8 goto pc+0
mark_precise: frame1: regs=r2 stack= before 8: (bd) if r2 <= r10 goto pc+3
mark_preci
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: smartpqi: Fix smp_processor_id() call trace for preemptible kernels
Correct kernel call trace when calling smp_processor_id() when called in
preemptible kernels by using raw_smp_processor_id().
smp_processor_id() checks to see if preemption is disabled and if not,
issue an error message followed by a call to dump_stack().
Brief example of call trace:
kernel: check_preemption_disabled: 436 callbacks suppressed
kernel: BUG: using smp_processor_id() in preemptible [00000000]
code: kworker/u1025:0/2354
kernel: caller is pqi_scsi_queue_command+0x183/0x310 [smartpqi]
kernel: CPU: 129 PID: 2354 Comm: kworker/u1025:0
kernel: ...
kernel: Workqueue: writeback wb_workfn (flush-253:0)
kernel: Call Trace:
kernel: <TASK>
kernel: dump_stack_lvl+0x34/0x48
kernel: check_preemption_disabled+0xdd/0xe0
kernel: pqi_scsi_queue_command+0x183/0x310 [smartpqi]
kernel: ... |
| In the Linux kernel, the following vulnerability has been resolved:
perf/amlogic: Replace smp_processor_id() with raw_smp_processor_id() in meson_ddr_pmu_create()
The Amlogic DDR PMU driver meson_ddr_pmu_create() function incorrectly uses
smp_processor_id(), which assumes disabled preemption. This leads to kernel
warnings during module loading because meson_ddr_pmu_create() can be called
in a preemptible context.
Following kernel warning and stack trace:
[ 31.745138] [ T2289] BUG: using smp_processor_id() in preemptible [00000000] code: (udev-worker)/2289
[ 31.745154] [ T2289] caller is debug_smp_processor_id+0x28/0x38
[ 31.745172] [ T2289] CPU: 4 UID: 0 PID: 2289 Comm: (udev-worker) Tainted: GW 6.14.0-0-MANJARO-ARM #1 59519addcbca6ba8de735e151fd7b9e97aac7ff0
[ 31.745181] [ T2289] Tainted: [W]=WARN
[ 31.745183] [ T2289] Hardware name: Hardkernel ODROID-N2Plus (DT)
[ 31.745188] [ T2289] Call trace:
[ 31.745191] [ T2289] show_stack+0x28/0x40 (C)
[ 31.745199] [ T2289] dump_stack_lvl+0x4c/0x198
[ 31.745205] [ T2289] dump_stack+0x20/0x50
[ 31.745209] [ T2289] check_preemption_disabled+0xec/0xf0
[ 31.745213] [ T2289] debug_smp_processor_id+0x28/0x38
[ 31.745216] [ T2289] meson_ddr_pmu_create+0x200/0x560 [meson_ddr_pmu_g12 8095101c49676ad138d9961e3eddaee10acca7bd]
[ 31.745237] [ T2289] g12_ddr_pmu_probe+0x20/0x38 [meson_ddr_pmu_g12 8095101c49676ad138d9961e3eddaee10acca7bd]
[ 31.745246] [ T2289] platform_probe+0x98/0xe0
[ 31.745254] [ T2289] really_probe+0x144/0x3f8
[ 31.745258] [ T2289] __driver_probe_device+0xb8/0x180
[ 31.745261] [ T2289] driver_probe_device+0x54/0x268
[ 31.745264] [ T2289] __driver_attach+0x11c/0x288
[ 31.745267] [ T2289] bus_for_each_dev+0xfc/0x160
[ 31.745274] [ T2289] driver_attach+0x34/0x50
[ 31.745277] [ T2289] bus_add_driver+0x160/0x2b0
[ 31.745281] [ T2289] driver_register+0x78/0x120
[ 31.745285] [ T2289] __platform_driver_register+0x30/0x48
[ 31.745288] [ T2289] init_module+0x30/0xfe0 [meson_ddr_pmu_g12 8095101c49676ad138d9961e3eddaee10acca7bd]
[ 31.745298] [ T2289] do_one_initcall+0x11c/0x438
[ 31.745303] [ T2289] do_init_module+0x68/0x228
[ 31.745311] [ T2289] load_module+0x118c/0x13a8
[ 31.745315] [ T2289] __arm64_sys_finit_module+0x274/0x390
[ 31.745320] [ T2289] invoke_syscall+0x74/0x108
[ 31.745326] [ T2289] el0_svc_common+0x90/0xf8
[ 31.745330] [ T2289] do_el0_svc+0x2c/0x48
[ 31.745333] [ T2289] el0_svc+0x60/0x150
[ 31.745337] [ T2289] el0t_64_sync_handler+0x80/0x118
[ 31.745341] [ T2289] el0t_64_sync+0x1b8/0x1c0
Changes replaces smp_processor_id() with raw_smp_processor_id() to
ensure safe CPU ID retrieval in preemptible contexts. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: core: do not bypass hid_hw_raw_request
hid_hw_raw_request() is actually useful to ensure the provided buffer
and length are valid. Directly calling in the low level transport driver
function bypassed those checks and allowed invalid paramto be used. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Fix handling of lrbp->cmd
ufshcd_queuecommand() may be called two times in a row for a SCSI command
before it is completed. Hence make the following changes:
- In the functions that submit a command, do not check the old value of
lrbp->cmd nor clear lrbp->cmd in error paths.
- In ufshcd_release_scsi_cmd(), do not clear lrbp->cmd.
See also scsi_send_eh_cmnd().
This commit prevents that the following appears if a command times out:
WARNING: at drivers/ufs/core/ufshcd.c:2965 ufshcd_queuecommand+0x6f8/0x9a8
Call trace:
ufshcd_queuecommand+0x6f8/0x9a8
scsi_send_eh_cmnd+0x2c0/0x960
scsi_eh_test_devices+0x100/0x314
scsi_eh_ready_devs+0xd90/0x114c
scsi_error_handler+0x2b4/0xb70
kthread+0x16c/0x1e0 |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix fget leak when fs don't support nowait buffered read
Heming reported a BUG when using io_uring doing link-cp on ocfs2. [1]
Do the following steps can reproduce this BUG:
mount -t ocfs2 /dev/vdc /mnt/ocfs2
cp testfile /mnt/ocfs2/
./link-cp /mnt/ocfs2/testfile /mnt/ocfs2/testfile.1
umount /mnt/ocfs2
Then umount will fail, and it outputs:
umount: /mnt/ocfs2: target is busy.
While tracing umount, it blames mnt_get_count() not return as expected.
Do a deep investigation for fget()/fput() on related code flow, I've
finally found that fget() leaks since ocfs2 doesn't support nowait
buffered read.
io_issue_sqe
|-io_assign_file // do fget() first
|-io_read
|-io_iter_do_read
|-ocfs2_file_read_iter // return -EOPNOTSUPP
|-kiocb_done
|-io_rw_done
|-__io_complete_rw_common // set REQ_F_REISSUE
|-io_resubmit_prep
|-io_req_prep_async // override req->file, leak happens
This was introduced by commit a196c78b5443 in v5.18. Fix it by don't
re-assign req->file if it has already been assigned.
[1] https://lore.kernel.org/ocfs2-devel/ab580a75-91c8-d68a-3455-40361be1bfa8@linux.alibaba.com/T/#t |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: fix incomplete validation of ioctl arg
We tested and found an alarm caused by nbd_ioctl arg without verification.
The UBSAN warning calltrace like below:
UBSAN: Undefined behaviour in fs/buffer.c:1709:35
signed integer overflow:
-9223372036854775808 - 1 cannot be represented in type 'long long int'
CPU: 3 PID: 2523 Comm: syz-executor.0 Not tainted 4.19.90 #1
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x3f0 arch/arm64/kernel/time.c:78
show_stack+0x28/0x38 arch/arm64/kernel/traps.c:158
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x170/0x1dc lib/dump_stack.c:118
ubsan_epilogue+0x18/0xb4 lib/ubsan.c:161
handle_overflow+0x188/0x1dc lib/ubsan.c:192
__ubsan_handle_sub_overflow+0x34/0x44 lib/ubsan.c:206
__block_write_full_page+0x94c/0xa20 fs/buffer.c:1709
block_write_full_page+0x1f0/0x280 fs/buffer.c:2934
blkdev_writepage+0x34/0x40 fs/block_dev.c:607
__writepage+0x68/0xe8 mm/page-writeback.c:2305
write_cache_pages+0x44c/0xc70 mm/page-writeback.c:2240
generic_writepages+0xdc/0x148 mm/page-writeback.c:2329
blkdev_writepages+0x2c/0x38 fs/block_dev.c:2114
do_writepages+0xd4/0x250 mm/page-writeback.c:2344
The reason for triggering this warning is __block_write_full_page()
-> i_size_read(inode) - 1 overflow.
inode->i_size is assigned in __nbd_ioctl() -> nbd_set_size() -> bytesize.
We think it is necessary to limit the size of arg to prevent errors.
Moreover, __nbd_ioctl() -> nbd_add_socket(), arg will be cast to int.
Assuming the value of arg is 0x80000000000000001) (on a 64-bit machine),
it will become 1 after the coercion, which will return unexpected results.
Fix it by adding checks to prevent passing in too large numbers. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-mmio: don't break lifecycle of vm_dev
vm_dev has a separate lifecycle because it has a 'struct device'
embedded. Thus, having a release callback for it is correct.
Allocating the vm_dev struct with devres totally breaks this protection,
though. Instead of waiting for the vm_dev release callback, the memory
is freed when the platform_device is removed. Resulting in a
use-after-free when finally the callback is to be called.
To easily see the problem, compile the kernel with
CONFIG_DEBUG_KOBJECT_RELEASE and unbind with sysfs.
The fix is easy, don't use devres in this case.
Found during my research about object lifetime problems. |
| In the Linux kernel, the following vulnerability has been resolved:
macvlan: add forgotten nla_policy for IFLA_MACVLAN_BC_CUTOFF
The previous commit 954d1fa1ac93 ("macvlan: Add netlink attribute for
broadcast cutoff") added one additional attribute named
IFLA_MACVLAN_BC_CUTOFF to allow broadcast cutfoff.
However, it forgot to describe the nla_policy at macvlan_policy
(drivers/net/macvlan.c). Hence, this suppose NLA_S32 (4 bytes) integer
can be faked as empty (0 bytes) by a malicious user, which could leads
to OOB in heap just like CVE-2023-3773.
To fix it, this commit just completes the nla_policy description for
IFLA_MACVLAN_BC_CUTOFF. This enforces the length check and avoids the
potential OOB read. |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: do not update mtu if msg_max is too small in mtu negotiation
When doing link mtu negotiation, a malicious peer may send Activate msg
with a very small mtu, e.g. 4 in Shuang's testing, without checking for
the minimum mtu, l->mtu will be set to 4 in tipc_link_proto_rcv(), then
n->links[bearer_id].mtu is set to 4294967228, which is a overflow of
'4 - INT_H_SIZE - EMSG_OVERHEAD' in tipc_link_mss().
With tipc_link.mtu = 4, tipc_link_xmit() kept printing the warning:
tipc: Too large msg, purging xmit list 1 5 0 40 4!
tipc: Too large msg, purging xmit list 1 15 0 60 4!
And with tipc_link_entry.mtu 4294967228, a huge skb was allocated in
named_distribute(), and when purging it in tipc_link_xmit(), a crash
was even caused:
general protection fault, probably for non-canonical address 0x2100001011000dd: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 0 Comm: swapper/0 Kdump: loaded Not tainted 6.3.0.neta #19
RIP: 0010:kfree_skb_list_reason+0x7e/0x1f0
Call Trace:
<IRQ>
skb_release_data+0xf9/0x1d0
kfree_skb_reason+0x40/0x100
tipc_link_xmit+0x57a/0x740 [tipc]
tipc_node_xmit+0x16c/0x5c0 [tipc]
tipc_named_node_up+0x27f/0x2c0 [tipc]
tipc_node_write_unlock+0x149/0x170 [tipc]
tipc_rcv+0x608/0x740 [tipc]
tipc_udp_recv+0xdc/0x1f0 [tipc]
udp_queue_rcv_one_skb+0x33e/0x620
udp_unicast_rcv_skb.isra.72+0x75/0x90
__udp4_lib_rcv+0x56d/0xc20
ip_protocol_deliver_rcu+0x100/0x2d0
This patch fixes it by checking the new mtu against tipc_bearer_min_mtu(),
and not updating mtu if it is too small. |