| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An out-of-bounds read flaw was found in Shim when it tried to validate the SBAT information. This issue may expose sensitive data during the system's boot phase. |
| A heap-based buffer overflow vulnerability was found in ImageMagick in versions prior to 7.0.11-14 in ReadTIFFImage() in coders/tiff.c. This issue is due to an incorrect setting of the pixel array size, which can lead to a crash and segmentation fault. |
| libuser has information disclosure when moving user's home directory |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: l2cap: fix null-ptr-deref in l2cap_chan_timeout
There is a race condition between l2cap_chan_timeout() and
l2cap_chan_del(). When we use l2cap_chan_del() to delete the
channel, the chan->conn will be set to null. But the conn could
be dereferenced again in the mutex_lock() of l2cap_chan_timeout().
As a result the null pointer dereference bug will happen. The
KASAN report triggered by POC is shown below:
[ 472.074580] ==================================================================
[ 472.075284] BUG: KASAN: null-ptr-deref in mutex_lock+0x68/0xc0
[ 472.075308] Write of size 8 at addr 0000000000000158 by task kworker/0:0/7
[ 472.075308]
[ 472.075308] CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.9.0-rc5-00356-g78c0094a146b #36
[ 472.075308] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4
[ 472.075308] Workqueue: events l2cap_chan_timeout
[ 472.075308] Call Trace:
[ 472.075308] <TASK>
[ 472.075308] dump_stack_lvl+0x137/0x1a0
[ 472.075308] print_report+0x101/0x250
[ 472.075308] ? __virt_addr_valid+0x77/0x160
[ 472.075308] ? mutex_lock+0x68/0xc0
[ 472.075308] kasan_report+0x139/0x170
[ 472.075308] ? mutex_lock+0x68/0xc0
[ 472.075308] kasan_check_range+0x2c3/0x2e0
[ 472.075308] mutex_lock+0x68/0xc0
[ 472.075308] l2cap_chan_timeout+0x181/0x300
[ 472.075308] process_one_work+0x5d2/0xe00
[ 472.075308] worker_thread+0xe1d/0x1660
[ 472.075308] ? pr_cont_work+0x5e0/0x5e0
[ 472.075308] kthread+0x2b7/0x350
[ 472.075308] ? pr_cont_work+0x5e0/0x5e0
[ 472.075308] ? kthread_blkcg+0xd0/0xd0
[ 472.075308] ret_from_fork+0x4d/0x80
[ 472.075308] ? kthread_blkcg+0xd0/0xd0
[ 472.075308] ret_from_fork_asm+0x11/0x20
[ 472.075308] </TASK>
[ 472.075308] ==================================================================
[ 472.094860] Disabling lock debugging due to kernel taint
[ 472.096136] BUG: kernel NULL pointer dereference, address: 0000000000000158
[ 472.096136] #PF: supervisor write access in kernel mode
[ 472.096136] #PF: error_code(0x0002) - not-present page
[ 472.096136] PGD 0 P4D 0
[ 472.096136] Oops: 0002 [#1] PREEMPT SMP KASAN NOPTI
[ 472.096136] CPU: 0 PID: 7 Comm: kworker/0:0 Tainted: G B 6.9.0-rc5-00356-g78c0094a146b #36
[ 472.096136] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4
[ 472.096136] Workqueue: events l2cap_chan_timeout
[ 472.096136] RIP: 0010:mutex_lock+0x88/0xc0
[ 472.096136] Code: be 08 00 00 00 e8 f8 23 1f fd 4c 89 f7 be 08 00 00 00 e8 eb 23 1f fd 42 80 3c 23 00 74 08 48 88
[ 472.096136] RSP: 0018:ffff88800744fc78 EFLAGS: 00000246
[ 472.096136] RAX: 0000000000000000 RBX: 1ffff11000e89f8f RCX: ffffffff8457c865
[ 472.096136] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffff88800744fc78
[ 472.096136] RBP: 0000000000000158 R08: ffff88800744fc7f R09: 1ffff11000e89f8f
[ 472.096136] R10: dffffc0000000000 R11: ffffed1000e89f90 R12: dffffc0000000000
[ 472.096136] R13: 0000000000000158 R14: ffff88800744fc78 R15: ffff888007405a00
[ 472.096136] FS: 0000000000000000(0000) GS:ffff88806d200000(0000) knlGS:0000000000000000
[ 472.096136] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 472.096136] CR2: 0000000000000158 CR3: 000000000da32000 CR4: 00000000000006f0
[ 472.096136] Call Trace:
[ 472.096136] <TASK>
[ 472.096136] ? __die_body+0x8d/0xe0
[ 472.096136] ? page_fault_oops+0x6b8/0x9a0
[ 472.096136] ? kernelmode_fixup_or_oops+0x20c/0x2a0
[ 472.096136] ? do_user_addr_fault+0x1027/0x1340
[ 472.096136] ? _printk+0x7a/0xa0
[ 472.096136] ? mutex_lock+0x68/0xc0
[ 472.096136] ? add_taint+0x42/0xd0
[ 472.096136] ? exc_page_fault+0x6a/0x1b0
[ 472.096136] ? asm_exc_page_fault+0x26/0x30
[ 472.096136] ? mutex_lock+0x75/0xc0
[ 472.096136] ? mutex_lock+0x88/0xc0
[ 472.096136] ? mutex_lock+0x75/0xc0
[ 472.096136] l2cap_chan_timeo
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix use-after-free bugs caused by sco_sock_timeout
When the sco connection is established and then, the sco socket
is releasing, timeout_work will be scheduled to judge whether
the sco disconnection is timeout. The sock will be deallocated
later, but it is dereferenced again in sco_sock_timeout. As a
result, the use-after-free bugs will happen. The root cause is
shown below:
Cleanup Thread | Worker Thread
sco_sock_release |
sco_sock_close |
__sco_sock_close |
sco_sock_set_timer |
schedule_delayed_work |
sco_sock_kill | (wait a time)
sock_put(sk) //FREE | sco_sock_timeout
| sock_hold(sk) //USE
The KASAN report triggered by POC is shown below:
[ 95.890016] ==================================================================
[ 95.890496] BUG: KASAN: slab-use-after-free in sco_sock_timeout+0x5e/0x1c0
[ 95.890755] Write of size 4 at addr ffff88800c388080 by task kworker/0:0/7
...
[ 95.890755] Workqueue: events sco_sock_timeout
[ 95.890755] Call Trace:
[ 95.890755] <TASK>
[ 95.890755] dump_stack_lvl+0x45/0x110
[ 95.890755] print_address_description+0x78/0x390
[ 95.890755] print_report+0x11b/0x250
[ 95.890755] ? __virt_addr_valid+0xbe/0xf0
[ 95.890755] ? sco_sock_timeout+0x5e/0x1c0
[ 95.890755] kasan_report+0x139/0x170
[ 95.890755] ? update_load_avg+0xe5/0x9f0
[ 95.890755] ? sco_sock_timeout+0x5e/0x1c0
[ 95.890755] kasan_check_range+0x2c3/0x2e0
[ 95.890755] sco_sock_timeout+0x5e/0x1c0
[ 95.890755] process_one_work+0x561/0xc50
[ 95.890755] worker_thread+0xab2/0x13c0
[ 95.890755] ? pr_cont_work+0x490/0x490
[ 95.890755] kthread+0x279/0x300
[ 95.890755] ? pr_cont_work+0x490/0x490
[ 95.890755] ? kthread_blkcg+0xa0/0xa0
[ 95.890755] ret_from_fork+0x34/0x60
[ 95.890755] ? kthread_blkcg+0xa0/0xa0
[ 95.890755] ret_from_fork_asm+0x11/0x20
[ 95.890755] </TASK>
[ 95.890755]
[ 95.890755] Allocated by task 506:
[ 95.890755] kasan_save_track+0x3f/0x70
[ 95.890755] __kasan_kmalloc+0x86/0x90
[ 95.890755] __kmalloc+0x17f/0x360
[ 95.890755] sk_prot_alloc+0xe1/0x1a0
[ 95.890755] sk_alloc+0x31/0x4e0
[ 95.890755] bt_sock_alloc+0x2b/0x2a0
[ 95.890755] sco_sock_create+0xad/0x320
[ 95.890755] bt_sock_create+0x145/0x320
[ 95.890755] __sock_create+0x2e1/0x650
[ 95.890755] __sys_socket+0xd0/0x280
[ 95.890755] __x64_sys_socket+0x75/0x80
[ 95.890755] do_syscall_64+0xc4/0x1b0
[ 95.890755] entry_SYSCALL_64_after_hwframe+0x67/0x6f
[ 95.890755]
[ 95.890755] Freed by task 506:
[ 95.890755] kasan_save_track+0x3f/0x70
[ 95.890755] kasan_save_free_info+0x40/0x50
[ 95.890755] poison_slab_object+0x118/0x180
[ 95.890755] __kasan_slab_free+0x12/0x30
[ 95.890755] kfree+0xb2/0x240
[ 95.890755] __sk_destruct+0x317/0x410
[ 95.890755] sco_sock_release+0x232/0x280
[ 95.890755] sock_close+0xb2/0x210
[ 95.890755] __fput+0x37f/0x770
[ 95.890755] task_work_run+0x1ae/0x210
[ 95.890755] get_signal+0xe17/0xf70
[ 95.890755] arch_do_signal_or_restart+0x3f/0x520
[ 95.890755] syscall_exit_to_user_mode+0x55/0x120
[ 95.890755] do_syscall_64+0xd1/0x1b0
[ 95.890755] entry_SYSCALL_64_after_hwframe+0x67/0x6f
[ 95.890755]
[ 95.890755] The buggy address belongs to the object at ffff88800c388000
[ 95.890755] which belongs to the cache kmalloc-1k of size 1024
[ 95.890755] The buggy address is located 128 bytes inside of
[ 95.890755] freed 1024-byte region [ffff88800c388000, ffff88800c388400)
[ 95.890755]
[ 95.890755] The buggy address belongs to the physical page:
[ 95.890755] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88800c38a800 pfn:0xc388
[ 95.890755] head: order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0
[ 95.890755] ano
---truncated--- |
| A vulnerability was found in libtiff due to multiple potential integer overflows in raw2tiff.c. This flaw allows remote attackers to cause a denial of service or possibly execute an arbitrary code via a crafted tiff image, which triggers a heap-based buffer overflow. |
| LibTIFF is vulnerable to an integer overflow. This flaw allows remote attackers to cause a denial of service (application crash) or possibly execute an arbitrary code via a crafted tiff image, which triggers a heap-based buffer overflow. |
| An out-of-memory flaw was found in libtiff. Passing a crafted tiff file to TIFFOpen() API may allow a remote attacker to cause a denial of service via a craft input with size smaller than 379 KB. |
| A memory leak flaw was found in Libtiff's tiffcrop utility. This issue occurs when tiffcrop operates on a TIFF image file, allowing an attacker to pass a crafted TIFF image file to tiffcrop utility, which causes this memory leak issue, resulting an application crash, eventually leading to a denial of service. |
| A flaw was found in X.Org Server Overlay Window. A Use-After-Free may lead to local privilege escalation. If a client explicitly destroys the compositor overlay window (aka COW), the Xserver would leave a dangling pointer to that window in the CompScreen structure, which will trigger a use-after-free later. |
| A vulnerability was found in perl 5.30.0 through 5.38.0. This issue occurs when a crafted regular expression is compiled by perl, which can allow an attacker controlled byte buffer overflow in a heap allocated buffer. |
| utility.c in telnetd in netkit telnet through 0.17 allows remote attackers to execute arbitrary code via short writes or urgent data, because of a buffer overflow involving the netclear and nextitem functions. |
| A buffer overflow was discovered in the GNU C Library's dynamic loader ld.so while processing the GLIBC_TUNABLES environment variable. This issue could allow a local attacker to use maliciously crafted GLIBC_TUNABLES environment variables when launching binaries with SUID permission to execute code with elevated privileges. |
| Git is a revision control system. Prior to versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4, an attacker can prepare a local repository in such a way that, when cloned, will execute arbitrary code during the operation. The problem has been patched in versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4. As a workaround, avoid cloning repositories from untrusted sources. |
| Git is a revision control system. Prior to versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4, local clones may end up hardlinking files into the target repository's object database when source and target repository reside on the same disk. If the source repository is owned by a different user, then those hardlinked files may be rewritten at any point in time by the untrusted user. Cloning local repositories will cause Git to either copy or hardlink files of the source repository into the target repository. This significantly speeds up such local clones compared to doing a "proper" clone and saves both disk space and compute time. When cloning a repository located on the same disk that is owned by a different user than the current user we also end up creating such hardlinks. These files will continue to be owned and controlled by the potentially-untrusted user and can be rewritten by them at will in the future. The problem has been patched in versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4. |
| Git is a revision control system. Prior to versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4, when cloning a local source repository that contains symlinks via the filesystem, Git may create hardlinks to arbitrary user-readable files on the same filesystem as the target repository in the `objects/` directory. Cloning a local repository over the filesystem may creating hardlinks to arbitrary user-owned files on the same filesystem in the target Git repository's `objects/` directory. When cloning a repository over the filesystem (without explicitly specifying the `file://` protocol or `--no-local`), the optimizations for local cloning
will be used, which include attempting to hard link the object files instead of copying them. While the code includes checks against symbolic links in the source repository, which were added during the fix for CVE-2022-39253, these checks can still be raced because the hard link operation ultimately follows symlinks. If the object on the filesystem appears as a file during the check, and then a symlink during the operation, this will allow the adversary to bypass the check and create hardlinks in the destination objects directory to arbitrary, user-readable files. The problem has been patched in versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4. |
| A memory leak flaw was found in ruby-magick, an interface between Ruby and ImageMagick. This issue can lead to a denial of service (DOS) by memory exhaustion. |
| Git is a revision control system. The Git project recommends to avoid working in untrusted repositories, and instead to clone it first with `git clone --no-local` to obtain a clean copy. Git has specific protections to make that a safe operation even with an untrusted source repository, but vulnerabilities allow those protections to be bypassed. In the context of cloning local repositories owned by other users, this vulnerability has been covered in CVE-2024-32004. But there are circumstances where the fixes for CVE-2024-32004 are not enough: For example, when obtaining a `.zip` file containing a full copy of a Git repository, it should not be trusted by default to be safe, as e.g. hooks could be configured to run within the context of that repository. The problem has been patched in versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4. As a workaround, avoid using Git in repositories that have been obtained via archives from untrusted sources. |
| In the Linux kernel, the following vulnerability has been resolved:
dyndbg: fix old BUG_ON in >control parser
Fix a BUG_ON from 2009. Even if it looks "unreachable" (I didn't
really look), lets make sure by removing it, doing pr_err and return
-EINVAL instead. |
| In addition to the c_rehash shell command injection identified in CVE-2022-1292, further circumstances where the c_rehash script does not properly sanitise shell metacharacters to prevent command injection were found by code review. When the CVE-2022-1292 was fixed it was not discovered that there are other places in the script where the file names of certificates being hashed were possibly passed to a command executed through the shell. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.4 (Affected 3.0.0,3.0.1,3.0.2,3.0.3). Fixed in OpenSSL 1.1.1p (Affected 1.1.1-1.1.1o). Fixed in OpenSSL 1.0.2zf (Affected 1.0.2-1.0.2ze). |