| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix a race when updating an existing write
After nfs_lock_and_join_requests() tests for whether the request is
still attached to the mapping, nothing prevents a call to
nfs_inode_remove_request() from succeeding until we actually lock the
page group.
The reason is that whoever called nfs_inode_remove_request() doesn't
necessarily have a lock on the page group head.
So in order to avoid races, let's take the page group lock earlier in
nfs_lock_and_join_requests(), and hold it across the removal of the
request in nfs_inode_remove_request(). |
| In the Linux kernel, the following vulnerability has been resolved:
sched/rt: Fix race in push_rt_task
Overview
========
When a CPU chooses to call push_rt_task and picks a task to push to
another CPU's runqueue then it will call find_lock_lowest_rq method
which would take a double lock on both CPUs' runqueues. If one of the
locks aren't readily available, it may lead to dropping the current
runqueue lock and reacquiring both the locks at once. During this window
it is possible that the task is already migrated and is running on some
other CPU. These cases are already handled. However, if the task is
migrated and has already been executed and another CPU is now trying to
wake it up (ttwu) such that it is queued again on the runqeue
(on_rq is 1) and also if the task was run by the same CPU, then the
current checks will pass even though the task was migrated out and is no
longer in the pushable tasks list.
Crashes
=======
This bug resulted in quite a few flavors of crashes triggering kernel
panics with various crash signatures such as assert failures, page
faults, null pointer dereferences, and queue corruption errors all
coming from scheduler itself.
Some of the crashes:
-> kernel BUG at kernel/sched/rt.c:1616! BUG_ON(idx >= MAX_RT_PRIO)
Call Trace:
? __die_body+0x1a/0x60
? die+0x2a/0x50
? do_trap+0x85/0x100
? pick_next_task_rt+0x6e/0x1d0
? do_error_trap+0x64/0xa0
? pick_next_task_rt+0x6e/0x1d0
? exc_invalid_op+0x4c/0x60
? pick_next_task_rt+0x6e/0x1d0
? asm_exc_invalid_op+0x12/0x20
? pick_next_task_rt+0x6e/0x1d0
__schedule+0x5cb/0x790
? update_ts_time_stats+0x55/0x70
schedule_idle+0x1e/0x40
do_idle+0x15e/0x200
cpu_startup_entry+0x19/0x20
start_secondary+0x117/0x160
secondary_startup_64_no_verify+0xb0/0xbb
-> BUG: kernel NULL pointer dereference, address: 00000000000000c0
Call Trace:
? __die_body+0x1a/0x60
? no_context+0x183/0x350
? __warn+0x8a/0xe0
? exc_page_fault+0x3d6/0x520
? asm_exc_page_fault+0x1e/0x30
? pick_next_task_rt+0xb5/0x1d0
? pick_next_task_rt+0x8c/0x1d0
__schedule+0x583/0x7e0
? update_ts_time_stats+0x55/0x70
schedule_idle+0x1e/0x40
do_idle+0x15e/0x200
cpu_startup_entry+0x19/0x20
start_secondary+0x117/0x160
secondary_startup_64_no_verify+0xb0/0xbb
-> BUG: unable to handle page fault for address: ffff9464daea5900
kernel BUG at kernel/sched/rt.c:1861! BUG_ON(rq->cpu != task_cpu(p))
-> kernel BUG at kernel/sched/rt.c:1055! BUG_ON(!rq->nr_running)
Call Trace:
? __die_body+0x1a/0x60
? die+0x2a/0x50
? do_trap+0x85/0x100
? dequeue_top_rt_rq+0xa2/0xb0
? do_error_trap+0x64/0xa0
? dequeue_top_rt_rq+0xa2/0xb0
? exc_invalid_op+0x4c/0x60
? dequeue_top_rt_rq+0xa2/0xb0
? asm_exc_invalid_op+0x12/0x20
? dequeue_top_rt_rq+0xa2/0xb0
dequeue_rt_entity+0x1f/0x70
dequeue_task_rt+0x2d/0x70
__schedule+0x1a8/0x7e0
? blk_finish_plug+0x25/0x40
schedule+0x3c/0xb0
futex_wait_queue_me+0xb6/0x120
futex_wait+0xd9/0x240
do_futex+0x344/0xa90
? get_mm_exe_file+0x30/0x60
? audit_exe_compare+0x58/0x70
? audit_filter_rules.constprop.26+0x65e/0x1220
__x64_sys_futex+0x148/0x1f0
do_syscall_64+0x30/0x80
entry_SYSCALL_64_after_hwframe+0x62/0xc7
-> BUG: unable to handle page fault for address: ffff8cf3608bc2c0
Call Trace:
? __die_body+0x1a/0x60
? no_context+0x183/0x350
? spurious_kernel_fault+0x171/0x1c0
? exc_page_fault+0x3b6/0x520
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? asm_exc_page_fault+0x1e/0x30
? _cond_resched+0x15/0x30
? futex_wait_queue_me+0xc8/0x120
? futex_wait+0xd9/0x240
? try_to_wake_up+0x1b8/0x490
? futex_wake+0x78/0x160
? do_futex+0xcd/0xa90
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? plist_del+0x6a/0xd0
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? dequeue_pushable_task+0x20/0x70
? __schedule+0x382/0x7e0
? asm_sysvec_reschedule_i
---truncated--- |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Shell allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Shell allows an authorized attacker to elevate privileges locally. |
| Use after free in Windows DirectX allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Microsoft Brokering File System allows an authorized attacker to elevate privileges locally. |
| A vulnerability has been found in PHPEMS up to 11.0. This impacts an unknown function of the component Purchase Request Handler. The manipulation leads to race condition. The attack may be initiated remotely. A high degree of complexity is needed for the attack. The exploitability is said to be difficult. The exploit has been disclosed to the public and may be used. |
| A vulnerability was detected in PHPEMS up to 11.0. The impacted element is an unknown function of the component Coupon Handler. Performing manipulation results in race condition. The attack can be initiated remotely. The complexity of an attack is rather high. The exploitability is regarded as difficult. The exploit is now public and may be used. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix Preauh_HashValue race condition
If client send multiple session setup requests to ksmbd,
Preauh_HashValue race condition could happen.
There is no need to free sess->Preauh_HashValue at session setup phase.
It can be freed together with session at connection termination phase. |
| In the Linux kernel, the following vulnerability has been resolved:
ppp: fix race conditions in ppp_fill_forward_path
ppp_fill_forward_path() has two race conditions:
1. The ppp->channels list can change between list_empty() and
list_first_entry(), as ppp_lock() is not held. If the only channel
is deleted in ppp_disconnect_channel(), list_first_entry() may
access an empty head or a freed entry, and trigger a panic.
2. pch->chan can be NULL. When ppp_unregister_channel() is called,
pch->chan is set to NULL before pch is removed from ppp->channels.
Fix these by using a lockless RCU approach:
- Use list_first_or_null_rcu() to safely test and access the first list
entry.
- Convert list modifications on ppp->channels to their RCU variants and
add synchronize_net() after removal.
- Check for a NULL pch->chan before dereferencing it. |
| Use after free in Windows NTFS allows an unauthorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
net/packet: fix a race in packet_set_ring() and packet_notifier()
When packet_set_ring() releases po->bind_lock, another thread can
run packet_notifier() and process an NETDEV_UP event.
This race and the fix are both similar to that of commit 15fe076edea7
("net/packet: fix a race in packet_bind() and packet_notifier()").
There too the packet_notifier NETDEV_UP event managed to run while a
po->bind_lock critical section had to be temporarily released. And
the fix was similarly to temporarily set po->num to zero to keep
the socket unhooked until the lock is retaken.
The po->bind_lock in packet_set_ring and packet_notifier precede the
introduction of git history. |
| A race condition was addressed with improved state handling. This issue is fixed in watchOS 26.2, Safari 26.2, iOS 18.7.3 and iPadOS 18.7.3, iOS 26.2 and iPadOS 26.2, macOS Tahoe 26.2, visionOS 26.2, tvOS 26.2. Processing maliciously crafted web content may lead to an unexpected process crash. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: seq: oss: Fix races at processing SysEx messages
OSS sequencer handles the SysEx messages split in 6 bytes packets, and
ALSA sequencer OSS layer tries to combine those. It stores the data
in the internal buffer and this access is racy as of now, which may
lead to the out-of-bounds access.
As a temporary band-aid fix, introduce a mutex for serializing the
process of the SysEx message packets. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Ensure DA_ID handling completion before deleting an NPIV instance
Deleting an NPIV instance requires all fabric ndlps to be released before
an NPIV's resources can be torn down. Failure to release fabric ndlps
beforehand opens kref imbalance race conditions. Fix by forcing the DA_ID
to complete synchronously with usage of wait_queue. |
| In the Linux kernel, the following vulnerability has been resolved:
exec: don't WARN for racy path_noexec check
Both i_mode and noexec checks wrapped in WARN_ON stem from an artifact
of the previous implementation. They used to legitimately check for the
condition, but that got moved up in two commits:
633fb6ac3980 ("exec: move S_ISREG() check earlier")
0fd338b2d2cd ("exec: move path_noexec() check earlier")
Instead of being removed said checks are WARN_ON'ed instead, which
has some debug value.
However, the spurious path_noexec check is racy, resulting in
unwarranted warnings should someone race with setting the noexec flag.
One can note there is more to perm-checking whether execve is allowed
and none of the conditions are guaranteed to still hold after they were
tested for.
Additionally this does not validate whether the code path did any perm
checking to begin with -- it will pass if the inode happens to be
regular.
Keep the redundant path_noexec() check even though it's mindless
nonsense checking for guarantee that isn't given so drop the WARN.
Reword the commentary and do small tidy ups while here.
[brauner: keep redundant path_noexec() check] |
| In the Linux kernel, the following vulnerability has been resolved:
lib/generic-radix-tree.c: Fix rare race in __genradix_ptr_alloc()
If we need to increase the tree depth, allocate a new node, and then
race with another thread that increased the tree depth before us, we'll
still have a preallocated node that might be used later.
If we then use that node for a new non-root node, it'll still have a
pointer to the old root instead of being zeroed - fix this by zeroing it
in the cmpxchg failure path. |
| In the Linux kernel, the following vulnerability has been resolved:
fsnotify: clear PARENT_WATCHED flags lazily
In some setups directories can have many (usually negative) dentries.
Hence __fsnotify_update_child_dentry_flags() function can take a
significant amount of time. Since the bulk of this function happens
under inode->i_lock this causes a significant contention on the lock
when we remove the watch from the directory as the
__fsnotify_update_child_dentry_flags() call from fsnotify_recalc_mask()
races with __fsnotify_update_child_dentry_flags() calls from
__fsnotify_parent() happening on children. This can lead upto softlockup
reports reported by users.
Fix the problem by calling fsnotify_update_children_dentry_flags() to
set PARENT_WATCHED flags only when parent starts watching children.
When parent stops watching children, clear false positive PARENT_WATCHED
flags lazily in __fsnotify_parent() for each accessed child. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: line6: Fix racy access to midibuf
There can be concurrent accesses to line6 midibuf from both the URB
completion callback and the rawmidi API access. This could be a cause
of KMSAN warning triggered by syzkaller below (so put as reported-by
here).
This patch protects the midibuf call of the former code path with a
spinlock for avoiding the possible races. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: fix race between delayed_work() and ceph_monc_stop()
The way the delayed work is handled in ceph_monc_stop() is prone to
races with mon_fault() and possibly also finish_hunting(). Both of
these can requeue the delayed work which wouldn't be canceled by any of
the following code in case that happens after cancel_delayed_work_sync()
runs -- __close_session() doesn't mess with the delayed work in order
to avoid interfering with the hunting interval logic. This part was
missed in commit b5d91704f53e ("libceph: behave in mon_fault() if
cur_mon < 0") and use-after-free can still ensue on monc and objects
that hang off of it, with monc->auth and monc->monmap being
particularly susceptible to quickly being reused.
To fix this:
- clear monc->cur_mon and monc->hunting as part of closing the session
in ceph_monc_stop()
- bail from delayed_work() if monc->cur_mon is cleared, similar to how
it's done in mon_fault() and finish_hunting() (based on monc->hunting)
- call cancel_delayed_work_sync() after the session is closed |