Search Results (19964 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-20829 1 Microsoft 16 Windows 10 1809, Windows 10 21h2, Windows 10 21h2 and 13 more 2026-01-27 5.5 Medium
Out-of-bounds read in Windows TPM allows an authorized attacker to disclose information locally.
CVE-2026-20828 1 Microsoft 23 Windows 10 1607, Windows 10 1809, Windows 10 21h2 and 20 more 2026-01-27 4.6 Medium
Out-of-bounds read in Windows Internet Connection Sharing (ICS) allows an unauthorized attacker to disclose information with a physical attack.
CVE-2026-20820 1 Microsoft 23 Windows 10 1607, Windows 10 1809, Windows 10 21h2 and 20 more 2026-01-27 7.8 High
Heap-based buffer overflow in Windows Common Log File System Driver allows an authorized attacker to elevate privileges locally.
CVE-2026-20809 1 Microsoft 20 Windows 10 1607, Windows 10 1809, Windows 10 21h2 and 17 more 2026-01-27 7.8 High
Time-of-check time-of-use (toctou) race condition in Windows Kernel Memory allows an authorized attacker to elevate privileges locally.
CVE-2022-50490 1 Linux 1 Linux Kernel 2026-01-27 7.1 High
In the Linux kernel, the following vulnerability has been resolved: bpf: Propagate error from htab_lock_bucket() to userspace In __htab_map_lookup_and_delete_batch() if htab_lock_bucket() returns -EBUSY, it will go to next bucket. Going to next bucket may not only skip the elements in current bucket silently, but also incur out-of-bound memory access or expose kernel memory to userspace if current bucket_cnt is greater than bucket_size or zero. Fixing it by stopping batch operation and returning -EBUSY when htab_lock_bucket() fails, and the application can retry or skip the busy batch as needed.
CVE-2025-38715 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-27 7.1 High
In the Linux kernel, the following vulnerability has been resolved: hfs: fix slab-out-of-bounds in hfs_bnode_read() This patch introduces is_bnode_offset_valid() method that checks the requested offset value. Also, it introduces check_and_correct_requested_length() method that checks and correct the requested length (if it is necessary). These methods are used in hfs_bnode_read(), hfs_bnode_write(), hfs_bnode_clear(), hfs_bnode_copy(), and hfs_bnode_move() with the goal to prevent the access out of allocated memory and triggering the crash.
CVE-2025-38713 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-27 7.1 High
In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc() The hfsplus_readdir() method is capable to crash by calling hfsplus_uni2asc(): [ 667.121659][ T9805] ================================================================== [ 667.122651][ T9805] BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0x902/0xa10 [ 667.123627][ T9805] Read of size 2 at addr ffff88802592f40c by task repro/9805 [ 667.124578][ T9805] [ 667.124876][ T9805] CPU: 3 UID: 0 PID: 9805 Comm: repro Not tainted 6.16.0-rc3 #1 PREEMPT(full) [ 667.124886][ T9805] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 667.124890][ T9805] Call Trace: [ 667.124893][ T9805] <TASK> [ 667.124896][ T9805] dump_stack_lvl+0x10e/0x1f0 [ 667.124911][ T9805] print_report+0xd0/0x660 [ 667.124920][ T9805] ? __virt_addr_valid+0x81/0x610 [ 667.124928][ T9805] ? __phys_addr+0xe8/0x180 [ 667.124934][ T9805] ? hfsplus_uni2asc+0x902/0xa10 [ 667.124942][ T9805] kasan_report+0xc6/0x100 [ 667.124950][ T9805] ? hfsplus_uni2asc+0x902/0xa10 [ 667.124959][ T9805] hfsplus_uni2asc+0x902/0xa10 [ 667.124966][ T9805] ? hfsplus_bnode_read+0x14b/0x360 [ 667.124974][ T9805] hfsplus_readdir+0x845/0xfc0 [ 667.124984][ T9805] ? __pfx_hfsplus_readdir+0x10/0x10 [ 667.124994][ T9805] ? stack_trace_save+0x8e/0xc0 [ 667.125008][ T9805] ? iterate_dir+0x18b/0xb20 [ 667.125015][ T9805] ? trace_lock_acquire+0x85/0xd0 [ 667.125022][ T9805] ? lock_acquire+0x30/0x80 [ 667.125029][ T9805] ? iterate_dir+0x18b/0xb20 [ 667.125037][ T9805] ? down_read_killable+0x1ed/0x4c0 [ 667.125044][ T9805] ? putname+0x154/0x1a0 [ 667.125051][ T9805] ? __pfx_down_read_killable+0x10/0x10 [ 667.125058][ T9805] ? apparmor_file_permission+0x239/0x3e0 [ 667.125069][ T9805] iterate_dir+0x296/0xb20 [ 667.125076][ T9805] __x64_sys_getdents64+0x13c/0x2c0 [ 667.125084][ T9805] ? __pfx___x64_sys_getdents64+0x10/0x10 [ 667.125091][ T9805] ? __x64_sys_openat+0x141/0x200 [ 667.125126][ T9805] ? __pfx_filldir64+0x10/0x10 [ 667.125134][ T9805] ? do_user_addr_fault+0x7fe/0x12f0 [ 667.125143][ T9805] do_syscall_64+0xc9/0x480 [ 667.125151][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 667.125158][ T9805] RIP: 0033:0x7fa8753b2fc9 [ 667.125164][ T9805] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 48 [ 667.125172][ T9805] RSP: 002b:00007ffe96f8e0f8 EFLAGS: 00000217 ORIG_RAX: 00000000000000d9 [ 667.125181][ T9805] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa8753b2fc9 [ 667.125185][ T9805] RDX: 0000000000000400 RSI: 00002000000063c0 RDI: 0000000000000004 [ 667.125190][ T9805] RBP: 00007ffe96f8e110 R08: 00007ffe96f8e110 R09: 00007ffe96f8e110 [ 667.125195][ T9805] R10: 0000000000000000 R11: 0000000000000217 R12: 0000556b1e3b4260 [ 667.125199][ T9805] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 667.125207][ T9805] </TASK> [ 667.125210][ T9805] [ 667.145632][ T9805] Allocated by task 9805: [ 667.145991][ T9805] kasan_save_stack+0x20/0x40 [ 667.146352][ T9805] kasan_save_track+0x14/0x30 [ 667.146717][ T9805] __kasan_kmalloc+0xaa/0xb0 [ 667.147065][ T9805] __kmalloc_noprof+0x205/0x550 [ 667.147448][ T9805] hfsplus_find_init+0x95/0x1f0 [ 667.147813][ T9805] hfsplus_readdir+0x220/0xfc0 [ 667.148174][ T9805] iterate_dir+0x296/0xb20 [ 667.148549][ T9805] __x64_sys_getdents64+0x13c/0x2c0 [ 667.148937][ T9805] do_syscall_64+0xc9/0x480 [ 667.149291][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 667.149809][ T9805] [ 667.150030][ T9805] The buggy address belongs to the object at ffff88802592f000 [ 667.150030][ T9805] which belongs to the cache kmalloc-2k of size 2048 [ 667.151282][ T9805] The buggy address is located 0 bytes to the right of [ 667.151282][ T9805] allocated 1036-byte region [ffff88802592f000, ffff88802592f40c) [ 667.1 ---truncated---
CVE-2026-1484 1 Redhat 1 Enterprise Linux 2026-01-27 4.2 Medium
A flaw was found in the GLib Base64 encoding routine when processing very large input data. Due to incorrect use of integer types during length calculation, the library may miscalculate buffer boundaries. This can cause memory writes outside the allocated buffer. Applications that process untrusted or extremely large Base64 input using GLib may crash or behave unpredictably.
CVE-2026-1485 1 Redhat 1 Enterprise Linux 2026-01-27 2.8 Low
A flaw was found in Glib's content type parsing logic. This buffer underflow vulnerability occurs because the length of a header line is stored in a signed integer, which can lead to integer wraparound for very large inputs. This results in pointer underflow and out-of-bounds memory access. Exploitation requires a local user to install or process a specially crafted treemagic file, which can lead to local denial of service or application instability.
CVE-2026-1361 1 Delta Electronics 1 Asdasoft 2026-01-27 7.8 High
ASDA-Soft Stack-based Buffer Overflow Vulnerability
CVE-2026-0925 1 Tanium 1 Tanium 2026-01-27 2.7 Low
Tanium addressed an improper input validation vulnerability in Discover.
CVE-2025-9820 1 Redhat 2 Enterprise Linux, Openshift 2026-01-27 4 Medium
A flaw was found in the GnuTLS library, specifically in the gnutls_pkcs11_token_init() function that handles PKCS#11 token initialization. When a token label longer than expected is processed, the function writes past the end of a fixed-size stack buffer. This programming error can cause the application using GnuTLS to crash or, in certain conditions, be exploited for code execution. As a result, systems or applications relying on GnuTLS may be vulnerable to a denial of service or local privilege escalation attacks.
CVE-2023-40550 2 Fedoraproject, Redhat 7 Fedora, Enterprise Linux, Rhel Aus and 4 more 2026-01-27 5.5 Medium
An out-of-bounds read flaw was found in Shim when it tried to validate the SBAT information. This issue may expose sensitive data during the system's boot phase.
CVE-2026-1425 1 Pymumu 1 Smartdns 2026-01-27 5.6 Medium
A security flaw has been discovered in pymumu SmartDNS up to 47.1. This vulnerability affects the function _dns_decode_rr_head/_dns_decode_SVCB_HTTPS of the file src/dns.c of the component SVBC Record Parser. The manipulation results in stack-based buffer overflow. It is possible to launch the attack remotely. A high complexity level is associated with this attack. It is stated that the exploitability is difficult. The patch is identified as 2d57c4b4e1add9b4537aeb403f794a084727e1c8. Applying a patch is advised to resolve this issue.
CVE-2025-38697 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: jfs: upper bound check of tree index in dbAllocAG When computing the tree index in dbAllocAG, we never check if we are out of bounds realative to the size of the stree. This could happen in a scenario where the filesystem metadata are corrupted.
CVE-2025-70651 1 Tenda 2 Ax1803, Ax1803 Firmware 2026-01-26 7.5 High
Tenda AX-1803 v1.0.0.1 was discovered to contain a stack overflow in the ssid parameter of the form_fast_setting_wifi_set function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2025-70648 1 Tenda 2 Ax1803, Ax1803 Firmware 2026-01-26 7.5 High
Tenda AX1803 v1.0.0.1 was discovered to contain a stack overflow in the security_5g parameter of the sub_727F4 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2025-70646 1 Tenda 2 Ax1803, Ax1803 Firmware 2026-01-26 7.5 High
Tenda AX1803 v1.0.0.1 was discovered to contain a stack overflow in the security parameter of the sub_72290 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2025-71020 1 Tenda 2 Ax1806, Ax1806 Firmware 2026-01-26 7.5 High
Tenda AX-1806 v1.0.0.1 was discovered to contain a stack overflow in the security parameter of the sub_4C408 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2025-70746 1 Tenda 2 Ax1806, Ax1806 Firmware 2026-01-26 7.5 High
Tenda AX-1806 v1.0.0.1 was discovered to contain a stack overflow in the timeZone parameter of the fromSetSysTime function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.