Search Results (1639 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-39845 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-20 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/mm/64: define ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings() Define ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings() to ensure page tables are properly synchronized when calling p*d_populate_kernel(). For 5-level paging, synchronization is performed via pgd_populate_kernel(). In 4-level paging, pgd_populate() is a no-op, so synchronization is instead performed at the P4D level via p4d_populate_kernel(). This fixes intermittent boot failures on systems using 4-level paging and a large amount of persistent memory: BUG: unable to handle page fault for address: ffffe70000000034 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: 0002 [#1] SMP NOPTI RIP: 0010:__init_single_page+0x9/0x6d Call Trace: <TASK> __init_zone_device_page+0x17/0x5d memmap_init_zone_device+0x154/0x1bb pagemap_range+0x2e0/0x40f memremap_pages+0x10b/0x2f0 devm_memremap_pages+0x1e/0x60 dev_dax_probe+0xce/0x2ec [device_dax] dax_bus_probe+0x6d/0xc9 [... snip ...] </TASK> It also fixes a crash in vmemmap_set_pmd() caused by accessing vmemmap before sync_global_pgds() [1]: BUG: unable to handle page fault for address: ffffeb3ff1200000 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] PREEMPT SMP NOPTI Tainted: [W]=WARN RIP: 0010:vmemmap_set_pmd+0xff/0x230 <TASK> vmemmap_populate_hugepages+0x176/0x180 vmemmap_populate+0x34/0x80 __populate_section_memmap+0x41/0x90 sparse_add_section+0x121/0x3e0 __add_pages+0xba/0x150 add_pages+0x1d/0x70 memremap_pages+0x3dc/0x810 devm_memremap_pages+0x1c/0x60 xe_devm_add+0x8b/0x100 [xe] xe_tile_init_noalloc+0x6a/0x70 [xe] xe_device_probe+0x48c/0x740 [xe] [... snip ...]
CVE-2025-39847 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-20 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ppp: fix memory leak in pad_compress_skb If alloc_skb() fails in pad_compress_skb(), it returns NULL without releasing the old skb. The caller does: skb = pad_compress_skb(ppp, skb); if (!skb) goto drop; drop: kfree_skb(skb); When pad_compress_skb() returns NULL, the reference to the old skb is lost and kfree_skb(skb) ends up doing nothing, leading to a memory leak. Align pad_compress_skb() semantics with realloc(): only free the old skb if allocation and compression succeed. At the call site, use the new_skb variable so the original skb is not lost when pad_compress_skb() fails.
CVE-2025-39848 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-20 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ax25: properly unshare skbs in ax25_kiss_rcv() Bernard Pidoux reported a regression apparently caused by commit c353e8983e0d ("net: introduce per netns packet chains"). skb->dev becomes NULL and we crash in __netif_receive_skb_core(). Before above commit, different kind of bugs or corruptions could happen without a major crash. But the root cause is that ax25_kiss_rcv() can queue/mangle input skb without checking if this skb is shared or not. Many thanks to Bernard Pidoux for his help, diagnosis and tests. We had a similar issue years ago fixed with commit 7aaed57c5c28 ("phonet: properly unshare skbs in phonet_rcv()").
CVE-2023-53449 1 Linux 1 Linux Kernel 2026-01-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/dasd: Fix potential memleak in dasd_eckd_init() `dasd_reserve_req` is allocated before `dasd_vol_info_req`, and it also needs to be freed before the error returns, just like the other cases in this function.
CVE-2023-53453 1 Linux 1 Linux Kernel 2026-01-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: free iio for atombios when driver shutdown Fix below kmemleak when unload radeon driver: unreferenced object 0xffff9f8608ede200 (size 512): comm "systemd-udevd", pid 326, jiffies 4294682822 (age 716.338s) hex dump (first 32 bytes): 00 00 00 00 c4 aa ec aa 14 ab 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<0000000062fadebe>] kmem_cache_alloc_trace+0x2f1/0x500 [<00000000b6883cea>] atom_parse+0x117/0x230 [radeon] [<00000000158c23fd>] radeon_atombios_init+0xab/0x170 [radeon] [<00000000683f672e>] si_init+0x57/0x750 [radeon] [<00000000566cc31f>] radeon_device_init+0x559/0x9c0 [radeon] [<0000000046efabb3>] radeon_driver_load_kms+0xc1/0x1a0 [radeon] [<00000000b5155064>] drm_dev_register+0xdd/0x1d0 [<0000000045fec835>] radeon_pci_probe+0xbd/0x100 [radeon] [<00000000e69ecca3>] pci_device_probe+0xe1/0x160 [<0000000019484b76>] really_probe.part.0+0xc1/0x2c0 [<000000003f2649da>] __driver_probe_device+0x96/0x130 [<00000000231c5bb1>] driver_probe_device+0x24/0xf0 [<0000000000a42377>] __driver_attach+0x77/0x190 [<00000000d7574da6>] bus_for_each_dev+0x7f/0xd0 [<00000000633166d2>] driver_attach+0x1e/0x30 [<00000000313b05b8>] bus_add_driver+0x12c/0x1e0 iio was allocated in atom_index_iio() called by atom_parse(), but it doesn't got released when the dirver is shutdown. Fix this kmemleak by free it in radeon_atombios_fini().
CVE-2023-53460 1 Linux 1 Linux Kernel 2026-01-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw88: fix memory leak in rtw_usb_probe() drivers/net/wireless/realtek/rtw88/usb.c:876 rtw_usb_probe() warn: 'hw' from ieee80211_alloc_hw() not released on lines: 811 Fix this by modifying return to a goto statement.
CVE-2022-50449 1 Linux 1 Linux Kernel 2026-01-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: samsung: Fix memory leak in _samsung_clk_register_pll() If clk_register() fails, @pll->rate_table may have allocated memory by kmemdup(), so it needs to be freed, otherwise will cause memory leak issue, this patch fixes it.
CVE-2022-50446 1 Linux 1 Linux Kernel 2026-01-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARC: mm: fix leakage of memory allocated for PTE Since commit d9820ff ("ARC: mm: switch pgtable_t back to struct page *") a memory leakage problem occurs. Memory allocated for page table entries not released during process termination. This issue can be reproduced by a small program that allocates a large amount of memory. After several runs, you'll see that the amount of free memory has reduced and will continue to reduce after each run. All ARC CPUs are effected by this issue. The issue was introduced since the kernel stable release v5.15-rc1. As described in commit d9820ff after switch pgtable_t back to struct page *, a pointer to "struct page" and appropriate functions are used to allocate and free a memory page for PTEs, but the pmd_pgtable macro hasn't changed and returns the direct virtual address from the PMD (PGD) entry. Than this address used as a parameter in the __pte_free() and as a result this function couldn't release memory page allocated for PTEs. Fix this issue by changing the pmd_pgtable macro and returning pointer to struct page.
CVE-2022-50451 1 Linux 1 Linux Kernel 2026-01-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fix memory leak on ntfs_fill_super() error path syzbot reported kmemleak as below: BUG: memory leak unreferenced object 0xffff8880122f1540 (size 32): comm "a.out", pid 6664, jiffies 4294939771 (age 25.500s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 ed ff ed ff 00 00 00 00 ................ backtrace: [<ffffffff81b16052>] ntfs_init_fs_context+0x22/0x1c0 [<ffffffff8164aaa7>] alloc_fs_context+0x217/0x430 [<ffffffff81626dd4>] path_mount+0x704/0x1080 [<ffffffff81627e7c>] __x64_sys_mount+0x18c/0x1d0 [<ffffffff84593e14>] do_syscall_64+0x34/0xb0 [<ffffffff84600087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd This patch fixes this issue by freeing mount options on error path of ntfs_fill_super().
CVE-2022-50469 1 Linux 1 Linux Kernel 2026-01-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix potential memory leak in rtw_init_drv_sw() In rtw_init_drv_sw(), there are various init functions are called to populate the padapter structure and some checks for their return value. However, except for the first one error path, the other five error paths do not properly release the previous allocated resources, which leads to various memory leaks. This patch fixes them and keeps the success and error separate. Note that these changes keep the form of `rtw_init_drv_sw()` in "drivers/staging/r8188eu/os_dep/os_intfs.c". As there is no proper device to test with, no runtime testing was performed.
CVE-2022-50466 1 Linux 1 Linux Kernel 2026-01-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs/binfmt_elf: Fix memory leak in load_elf_binary() There is a memory leak reported by kmemleak: unreferenced object 0xffff88817104ef80 (size 224): comm "xfs_admin", pid 47165, jiffies 4298708825 (age 1333.476s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 60 a8 b3 00 81 88 ff ff a8 10 5a 00 81 88 ff ff `.........Z..... backtrace: [<ffffffff819171e1>] __alloc_file+0x21/0x250 [<ffffffff81918061>] alloc_empty_file+0x41/0xf0 [<ffffffff81948cda>] path_openat+0xea/0x3d30 [<ffffffff8194ec89>] do_filp_open+0x1b9/0x290 [<ffffffff8192660e>] do_open_execat+0xce/0x5b0 [<ffffffff81926b17>] open_exec+0x27/0x50 [<ffffffff81a69250>] load_elf_binary+0x510/0x3ed0 [<ffffffff81927759>] bprm_execve+0x599/0x1240 [<ffffffff8192a997>] do_execveat_common.isra.0+0x4c7/0x680 [<ffffffff8192b078>] __x64_sys_execve+0x88/0xb0 [<ffffffff83bbf0a5>] do_syscall_64+0x35/0x80 If "interp_elf_ex" fails to allocate memory in load_elf_binary(), the program will take the "out_free_ph" error handing path, resulting in "interpreter" file resource is not released. Fix it by adding an error handing path "out_free_file", which will release the file resource when "interp_elf_ex" failed to allocate memory.
CVE-2022-50465 1 Linux 1 Linux Kernel 2026-01-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix leaking uninitialized memory in fast-commit journal When space at the end of fast-commit journal blocks is unused, make sure to zero it out so that uninitialized memory is not leaked to disk.
CVE-2022-50463 1 Linux 1 Linux Kernel 2026-01-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/52xx: Fix a resource leak in an error handling path The error handling path of mpc52xx_lpbfifo_probe() has a request_irq() that is not balanced by a corresponding free_irq(). Add the missing call, as already done in the remove function.
CVE-2022-50462 1 Linux 1 Linux Kernel 2026-01-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: MIPS: vpe-mt: fix possible memory leak while module exiting Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's bus_id string array"), the name of device is allocated dynamically, it need be freed when module exiting, call put_device() to give up reference, so that it can be freed in kobject_cleanup() when the refcount hit to 0. The vpe_device is static, so remove kfree() from vpe_device_release().
CVE-2022-50460 1 Linux 1 Linux Kernel 2026-01-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix xid leak in cifs_flock() If not flock, before return -ENOLCK, should free the xid, otherwise, the xid will be leaked.
CVE-2026-22024 1 Nasa 1 Cryptolib 2026-01-16 5.3 Medium
CryptoLib provides a software-only solution using the CCSDS Space Data Link Security Protocol - Extended Procedures (SDLS-EP) to secure communications between a spacecraft running the core Flight System (cFS) and a ground station. Prior to version 1.4.3, the cryptography_encrypt() function allocates multiple buffers for HTTP requests and JSON parsing that are never freed on any code path. Each call leaks approximately 400 bytes of memory. Sustained traffic can gradually exhaust available memory. This issue has been patched in version 1.4.3.
CVE-2026-22025 1 Nasa 1 Cryptolib 2026-01-16 3.7 Low
CryptoLib provides a software-only solution using the CCSDS Space Data Link Security Protocol - Extended Procedures (SDLS-EP) to secure communications between a spacecraft running the core Flight System (cFS) and a ground station. Prior to version 1.4.3, when the KMC server returns a non-200 HTTP status code, cryptography_encrypt() and cryptography_decrypt() return immediately without freeing previously allocated buffers. Each failed request leaks approximately 467 bytes. Repeated failures (from a malicious server or network issues) can gradually exhaust memory. This issue has been patched in version 1.4.3.
CVE-2025-39893 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: spi: spi-qpic-snand: unregister ECC engine on probe error and device remove The on-host hardware ECC engine remains registered both when the spi_register_controller() function returns with an error and also on device removal. Change the qcom_spi_probe() function to unregister the engine on the error path, and add the missing unregistering call to qcom_spi_remove() to avoid possible use-after-free issues.
CVE-2025-39852 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/tcp: Fix socket memory leak in TCP-AO failure handling for IPv6 When tcp_ao_copy_all_matching() fails in tcp_v6_syn_recv_sock() it just exits the function. This ends up causing a memory-leak: unreferenced object 0xffff0000281a8200 (size 2496): comm "softirq", pid 0, jiffies 4295174684 hex dump (first 32 bytes): 7f 00 00 06 7f 00 00 06 00 00 00 00 cb a8 88 13 ................ 0a 00 03 61 00 00 00 00 00 00 00 00 00 00 00 00 ...a............ backtrace (crc 5ebdbe15): kmemleak_alloc+0x44/0xe0 kmem_cache_alloc_noprof+0x248/0x470 sk_prot_alloc+0x48/0x120 sk_clone_lock+0x38/0x3b0 inet_csk_clone_lock+0x34/0x150 tcp_create_openreq_child+0x3c/0x4a8 tcp_v6_syn_recv_sock+0x1c0/0x620 tcp_check_req+0x588/0x790 tcp_v6_rcv+0x5d0/0xc18 ip6_protocol_deliver_rcu+0x2d8/0x4c0 ip6_input_finish+0x74/0x148 ip6_input+0x50/0x118 ip6_sublist_rcv+0x2fc/0x3b0 ipv6_list_rcv+0x114/0x170 __netif_receive_skb_list_core+0x16c/0x200 netif_receive_skb_list_internal+0x1f0/0x2d0 This is because in tcp_v6_syn_recv_sock (and the IPv4 counterpart), when exiting upon error, inet_csk_prepare_forced_close() and tcp_done() need to be called. They make sure the newsk will end up being correctly free'd. tcp_v4_syn_recv_sock() makes this very clear by having the put_and_exit label that takes care of things. So, this patch here makes sure tcp_v4_syn_recv_sock and tcp_v6_syn_recv_sock have similar error-handling and thus fixes the leak for TCP-AO.
CVE-2023-53441 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: cpumap: Fix memory leak in cpu_map_update_elem Syzkaller reported a memory leak as follows: BUG: memory leak unreferenced object 0xff110001198ef748 (size 192): comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s) hex dump (first 32 bytes): 00 00 00 00 4a 19 00 00 80 ad e3 e4 fe ff c0 00 ....J........... 00 b2 d3 0c 01 00 11 ff 28 f5 8e 19 01 00 11 ff ........(....... backtrace: [<ffffffffadd28087>] __cpu_map_entry_alloc+0xf7/0xb00 [<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0 [<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520 [<ffffffffadc7349b>] map_update_elem+0x4cb/0x720 [<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90 [<ffffffffb029cc80>] do_syscall_64+0x30/0x40 [<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6 BUG: memory leak unreferenced object 0xff110001198ef528 (size 192): comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffffadd281f0>] __cpu_map_entry_alloc+0x260/0xb00 [<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0 [<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520 [<ffffffffadc7349b>] map_update_elem+0x4cb/0x720 [<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90 [<ffffffffb029cc80>] do_syscall_64+0x30/0x40 [<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6 BUG: memory leak unreferenced object 0xff1100010fd93d68 (size 8): comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s) hex dump (first 8 bytes): 00 00 00 00 00 00 00 00 ........ backtrace: [<ffffffffade5db3e>] kvmalloc_node+0x11e/0x170 [<ffffffffadd28280>] __cpu_map_entry_alloc+0x2f0/0xb00 [<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0 [<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520 [<ffffffffadc7349b>] map_update_elem+0x4cb/0x720 [<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90 [<ffffffffb029cc80>] do_syscall_64+0x30/0x40 [<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6 In the cpu_map_update_elem flow, when kthread_stop is called before calling the threadfn of rcpu->kthread, since the KTHREAD_SHOULD_STOP bit of kthread has been set by kthread_stop, the threadfn of rcpu->kthread will never be executed, and rcpu->refcnt will never be 0, which will lead to the allocated rcpu, rcpu->queue and rcpu->queue->queue cannot be released. Calling kthread_stop before executing kthread's threadfn will return -EINTR. We can complete the release of memory resources in this state.