| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mm/64: define ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings()
Define ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings() to ensure
page tables are properly synchronized when calling p*d_populate_kernel().
For 5-level paging, synchronization is performed via
pgd_populate_kernel(). In 4-level paging, pgd_populate() is a no-op, so
synchronization is instead performed at the P4D level via
p4d_populate_kernel().
This fixes intermittent boot failures on systems using 4-level paging and
a large amount of persistent memory:
BUG: unable to handle page fault for address: ffffe70000000034
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] SMP NOPTI
RIP: 0010:__init_single_page+0x9/0x6d
Call Trace:
<TASK>
__init_zone_device_page+0x17/0x5d
memmap_init_zone_device+0x154/0x1bb
pagemap_range+0x2e0/0x40f
memremap_pages+0x10b/0x2f0
devm_memremap_pages+0x1e/0x60
dev_dax_probe+0xce/0x2ec [device_dax]
dax_bus_probe+0x6d/0xc9
[... snip ...]
</TASK>
It also fixes a crash in vmemmap_set_pmd() caused by accessing vmemmap
before sync_global_pgds() [1]:
BUG: unable to handle page fault for address: ffffeb3ff1200000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: Oops: 0002 [#1] PREEMPT SMP NOPTI
Tainted: [W]=WARN
RIP: 0010:vmemmap_set_pmd+0xff/0x230
<TASK>
vmemmap_populate_hugepages+0x176/0x180
vmemmap_populate+0x34/0x80
__populate_section_memmap+0x41/0x90
sparse_add_section+0x121/0x3e0
__add_pages+0xba/0x150
add_pages+0x1d/0x70
memremap_pages+0x3dc/0x810
devm_memremap_pages+0x1c/0x60
xe_devm_add+0x8b/0x100 [xe]
xe_tile_init_noalloc+0x6a/0x70 [xe]
xe_device_probe+0x48c/0x740 [xe]
[... snip ...] |
| In the Linux kernel, the following vulnerability has been resolved:
ppp: fix memory leak in pad_compress_skb
If alloc_skb() fails in pad_compress_skb(), it returns NULL without
releasing the old skb. The caller does:
skb = pad_compress_skb(ppp, skb);
if (!skb)
goto drop;
drop:
kfree_skb(skb);
When pad_compress_skb() returns NULL, the reference to the old skb is
lost and kfree_skb(skb) ends up doing nothing, leading to a memory leak.
Align pad_compress_skb() semantics with realloc(): only free the old
skb if allocation and compression succeed. At the call site, use the
new_skb variable so the original skb is not lost when pad_compress_skb()
fails. |
| In the Linux kernel, the following vulnerability has been resolved:
ax25: properly unshare skbs in ax25_kiss_rcv()
Bernard Pidoux reported a regression apparently caused by commit
c353e8983e0d ("net: introduce per netns packet chains").
skb->dev becomes NULL and we crash in __netif_receive_skb_core().
Before above commit, different kind of bugs or corruptions could happen
without a major crash.
But the root cause is that ax25_kiss_rcv() can queue/mangle input skb
without checking if this skb is shared or not.
Many thanks to Bernard Pidoux for his help, diagnosis and tests.
We had a similar issue years ago fixed with commit 7aaed57c5c28
("phonet: properly unshare skbs in phonet_rcv()"). |
| In the Linux kernel, the following vulnerability has been resolved:
s390/dasd: Fix potential memleak in dasd_eckd_init()
`dasd_reserve_req` is allocated before `dasd_vol_info_req`, and it
also needs to be freed before the error returns, just like the other
cases in this function. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: free iio for atombios when driver shutdown
Fix below kmemleak when unload radeon driver:
unreferenced object 0xffff9f8608ede200 (size 512):
comm "systemd-udevd", pid 326, jiffies 4294682822 (age 716.338s)
hex dump (first 32 bytes):
00 00 00 00 c4 aa ec aa 14 ab 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000062fadebe>] kmem_cache_alloc_trace+0x2f1/0x500
[<00000000b6883cea>] atom_parse+0x117/0x230 [radeon]
[<00000000158c23fd>] radeon_atombios_init+0xab/0x170 [radeon]
[<00000000683f672e>] si_init+0x57/0x750 [radeon]
[<00000000566cc31f>] radeon_device_init+0x559/0x9c0 [radeon]
[<0000000046efabb3>] radeon_driver_load_kms+0xc1/0x1a0 [radeon]
[<00000000b5155064>] drm_dev_register+0xdd/0x1d0
[<0000000045fec835>] radeon_pci_probe+0xbd/0x100 [radeon]
[<00000000e69ecca3>] pci_device_probe+0xe1/0x160
[<0000000019484b76>] really_probe.part.0+0xc1/0x2c0
[<000000003f2649da>] __driver_probe_device+0x96/0x130
[<00000000231c5bb1>] driver_probe_device+0x24/0xf0
[<0000000000a42377>] __driver_attach+0x77/0x190
[<00000000d7574da6>] bus_for_each_dev+0x7f/0xd0
[<00000000633166d2>] driver_attach+0x1e/0x30
[<00000000313b05b8>] bus_add_driver+0x12c/0x1e0
iio was allocated in atom_index_iio() called by atom_parse(),
but it doesn't got released when the dirver is shutdown.
Fix this kmemleak by free it in radeon_atombios_fini(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: fix memory leak in rtw_usb_probe()
drivers/net/wireless/realtek/rtw88/usb.c:876 rtw_usb_probe()
warn: 'hw' from ieee80211_alloc_hw() not released on lines: 811
Fix this by modifying return to a goto statement. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: samsung: Fix memory leak in _samsung_clk_register_pll()
If clk_register() fails, @pll->rate_table may have allocated memory by
kmemdup(), so it needs to be freed, otherwise will cause memory leak
issue, this patch fixes it. |
| In the Linux kernel, the following vulnerability has been resolved:
ARC: mm: fix leakage of memory allocated for PTE
Since commit d9820ff ("ARC: mm: switch pgtable_t back to struct page *")
a memory leakage problem occurs. Memory allocated for page table entries
not released during process termination. This issue can be reproduced by
a small program that allocates a large amount of memory. After several
runs, you'll see that the amount of free memory has reduced and will
continue to reduce after each run. All ARC CPUs are effected by this
issue. The issue was introduced since the kernel stable release v5.15-rc1.
As described in commit d9820ff after switch pgtable_t back to struct
page *, a pointer to "struct page" and appropriate functions are used to
allocate and free a memory page for PTEs, but the pmd_pgtable macro hasn't
changed and returns the direct virtual address from the PMD (PGD) entry.
Than this address used as a parameter in the __pte_free() and as a result
this function couldn't release memory page allocated for PTEs.
Fix this issue by changing the pmd_pgtable macro and returning pointer to
struct page. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix memory leak on ntfs_fill_super() error path
syzbot reported kmemleak as below:
BUG: memory leak
unreferenced object 0xffff8880122f1540 (size 32):
comm "a.out", pid 6664, jiffies 4294939771 (age 25.500s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 ed ff ed ff 00 00 00 00 ................
backtrace:
[<ffffffff81b16052>] ntfs_init_fs_context+0x22/0x1c0
[<ffffffff8164aaa7>] alloc_fs_context+0x217/0x430
[<ffffffff81626dd4>] path_mount+0x704/0x1080
[<ffffffff81627e7c>] __x64_sys_mount+0x18c/0x1d0
[<ffffffff84593e14>] do_syscall_64+0x34/0xb0
[<ffffffff84600087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
This patch fixes this issue by freeing mount options on error path of
ntfs_fill_super(). |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix potential memory leak in rtw_init_drv_sw()
In rtw_init_drv_sw(), there are various init functions are called to
populate the padapter structure and some checks for their return value.
However, except for the first one error path, the other five error paths
do not properly release the previous allocated resources, which leads to
various memory leaks.
This patch fixes them and keeps the success and error separate.
Note that these changes keep the form of `rtw_init_drv_sw()` in
"drivers/staging/r8188eu/os_dep/os_intfs.c". As there is no proper device
to test with, no runtime testing was performed. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/binfmt_elf: Fix memory leak in load_elf_binary()
There is a memory leak reported by kmemleak:
unreferenced object 0xffff88817104ef80 (size 224):
comm "xfs_admin", pid 47165, jiffies 4298708825 (age 1333.476s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
60 a8 b3 00 81 88 ff ff a8 10 5a 00 81 88 ff ff `.........Z.....
backtrace:
[<ffffffff819171e1>] __alloc_file+0x21/0x250
[<ffffffff81918061>] alloc_empty_file+0x41/0xf0
[<ffffffff81948cda>] path_openat+0xea/0x3d30
[<ffffffff8194ec89>] do_filp_open+0x1b9/0x290
[<ffffffff8192660e>] do_open_execat+0xce/0x5b0
[<ffffffff81926b17>] open_exec+0x27/0x50
[<ffffffff81a69250>] load_elf_binary+0x510/0x3ed0
[<ffffffff81927759>] bprm_execve+0x599/0x1240
[<ffffffff8192a997>] do_execveat_common.isra.0+0x4c7/0x680
[<ffffffff8192b078>] __x64_sys_execve+0x88/0xb0
[<ffffffff83bbf0a5>] do_syscall_64+0x35/0x80
If "interp_elf_ex" fails to allocate memory in load_elf_binary(),
the program will take the "out_free_ph" error handing path,
resulting in "interpreter" file resource is not released.
Fix it by adding an error handing path "out_free_file", which will
release the file resource when "interp_elf_ex" failed to allocate
memory. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix leaking uninitialized memory in fast-commit journal
When space at the end of fast-commit journal blocks is unused, make sure
to zero it out so that uninitialized memory is not leaked to disk. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/52xx: Fix a resource leak in an error handling path
The error handling path of mpc52xx_lpbfifo_probe() has a request_irq()
that is not balanced by a corresponding free_irq().
Add the missing call, as already done in the remove function. |
| In the Linux kernel, the following vulnerability has been resolved:
MIPS: vpe-mt: fix possible memory leak while module exiting
Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's
bus_id string array"), the name of device is allocated dynamically,
it need be freed when module exiting, call put_device() to give up
reference, so that it can be freed in kobject_cleanup() when the
refcount hit to 0. The vpe_device is static, so remove kfree() from
vpe_device_release(). |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix xid leak in cifs_flock()
If not flock, before return -ENOLCK, should free the xid,
otherwise, the xid will be leaked. |
| CryptoLib provides a software-only solution using the CCSDS Space Data Link Security Protocol - Extended Procedures (SDLS-EP) to secure communications between a spacecraft running the core Flight System (cFS) and a ground station. Prior to version 1.4.3, the cryptography_encrypt() function allocates multiple buffers for HTTP requests and JSON parsing that are never freed on any code path. Each call leaks approximately 400 bytes of memory. Sustained traffic can gradually exhaust available memory. This issue has been patched in version 1.4.3. |
| CryptoLib provides a software-only solution using the CCSDS Space Data Link Security Protocol - Extended Procedures (SDLS-EP) to secure communications between a spacecraft running the core Flight System (cFS) and a ground station. Prior to version 1.4.3, when the KMC server returns a non-200 HTTP status code, cryptography_encrypt() and cryptography_decrypt() return immediately without freeing previously allocated buffers. Each failed request leaks approximately 467 bytes. Repeated failures (from a malicious server or network issues) can gradually exhaust memory. This issue has been patched in version 1.4.3. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: spi-qpic-snand: unregister ECC engine on probe error and device remove
The on-host hardware ECC engine remains registered both when
the spi_register_controller() function returns with an error
and also on device removal.
Change the qcom_spi_probe() function to unregister the engine
on the error path, and add the missing unregistering call to
qcom_spi_remove() to avoid possible use-after-free issues. |
| In the Linux kernel, the following vulnerability has been resolved:
net/tcp: Fix socket memory leak in TCP-AO failure handling for IPv6
When tcp_ao_copy_all_matching() fails in tcp_v6_syn_recv_sock() it just
exits the function. This ends up causing a memory-leak:
unreferenced object 0xffff0000281a8200 (size 2496):
comm "softirq", pid 0, jiffies 4295174684
hex dump (first 32 bytes):
7f 00 00 06 7f 00 00 06 00 00 00 00 cb a8 88 13 ................
0a 00 03 61 00 00 00 00 00 00 00 00 00 00 00 00 ...a............
backtrace (crc 5ebdbe15):
kmemleak_alloc+0x44/0xe0
kmem_cache_alloc_noprof+0x248/0x470
sk_prot_alloc+0x48/0x120
sk_clone_lock+0x38/0x3b0
inet_csk_clone_lock+0x34/0x150
tcp_create_openreq_child+0x3c/0x4a8
tcp_v6_syn_recv_sock+0x1c0/0x620
tcp_check_req+0x588/0x790
tcp_v6_rcv+0x5d0/0xc18
ip6_protocol_deliver_rcu+0x2d8/0x4c0
ip6_input_finish+0x74/0x148
ip6_input+0x50/0x118
ip6_sublist_rcv+0x2fc/0x3b0
ipv6_list_rcv+0x114/0x170
__netif_receive_skb_list_core+0x16c/0x200
netif_receive_skb_list_internal+0x1f0/0x2d0
This is because in tcp_v6_syn_recv_sock (and the IPv4 counterpart), when
exiting upon error, inet_csk_prepare_forced_close() and tcp_done() need
to be called. They make sure the newsk will end up being correctly
free'd.
tcp_v4_syn_recv_sock() makes this very clear by having the put_and_exit
label that takes care of things. So, this patch here makes sure
tcp_v4_syn_recv_sock and tcp_v6_syn_recv_sock have similar
error-handling and thus fixes the leak for TCP-AO. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: cpumap: Fix memory leak in cpu_map_update_elem
Syzkaller reported a memory leak as follows:
BUG: memory leak
unreferenced object 0xff110001198ef748 (size 192):
comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
hex dump (first 32 bytes):
00 00 00 00 4a 19 00 00 80 ad e3 e4 fe ff c0 00 ....J...........
00 b2 d3 0c 01 00 11 ff 28 f5 8e 19 01 00 11 ff ........(.......
backtrace:
[<ffffffffadd28087>] __cpu_map_entry_alloc+0xf7/0xb00
[<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
[<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
[<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
[<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
[<ffffffffb029cc80>] do_syscall_64+0x30/0x40
[<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
BUG: memory leak
unreferenced object 0xff110001198ef528 (size 192):
comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffffadd281f0>] __cpu_map_entry_alloc+0x260/0xb00
[<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
[<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
[<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
[<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
[<ffffffffb029cc80>] do_syscall_64+0x30/0x40
[<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
BUG: memory leak
unreferenced object 0xff1100010fd93d68 (size 8):
comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
hex dump (first 8 bytes):
00 00 00 00 00 00 00 00 ........
backtrace:
[<ffffffffade5db3e>] kvmalloc_node+0x11e/0x170
[<ffffffffadd28280>] __cpu_map_entry_alloc+0x2f0/0xb00
[<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
[<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
[<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
[<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
[<ffffffffb029cc80>] do_syscall_64+0x30/0x40
[<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
In the cpu_map_update_elem flow, when kthread_stop is called before
calling the threadfn of rcpu->kthread, since the KTHREAD_SHOULD_STOP bit
of kthread has been set by kthread_stop, the threadfn of rcpu->kthread
will never be executed, and rcpu->refcnt will never be 0, which will
lead to the allocated rcpu, rcpu->queue and rcpu->queue->queue cannot be
released.
Calling kthread_stop before executing kthread's threadfn will return
-EINTR. We can complete the release of memory resources in this state. |