| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: kexec: initialize kexec_buf struct in load_other_segments()
Patch series "kexec: Fix invalid field access".
The kexec_buf structure was previously declared without initialization.
commit bf454ec31add ("kexec_file: allow to place kexec_buf randomly")
added a field that is always read but not consistently populated by all
architectures. This un-initialized field will contain garbage.
This is also triggering a UBSAN warning when the uninitialized data was
accessed:
------------[ cut here ]------------
UBSAN: invalid-load in ./include/linux/kexec.h:210:10
load of value 252 is not a valid value for type '_Bool'
Zero-initializing kexec_buf at declaration ensures all fields are cleanly
set, preventing future instances of uninitialized memory being used.
An initial fix was already landed for arm64[0], and this patchset fixes
the problem on the remaining arm64 code and on riscv, as raised by Mark.
Discussions about this problem could be found at[1][2].
This patch (of 3):
The kexec_buf structure was previously declared without initialization.
commit bf454ec31add ("kexec_file: allow to place kexec_buf randomly")
added a field that is always read but not consistently populated by all
architectures. This un-initialized field will contain garbage.
This is also triggering a UBSAN warning when the uninitialized data was
accessed:
------------[ cut here ]------------
UBSAN: invalid-load in ./include/linux/kexec.h:210:10
load of value 252 is not a valid value for type '_Bool'
Zero-initializing kexec_buf at declaration ensures all fields are
cleanly set, preventing future instances of uninitialized memory being
used. |
| In the Linux kernel, the following vulnerability has been resolved:
mISDN: hfcpci: Fix warning when deleting uninitialized timer
With CONFIG_DEBUG_OBJECTS_TIMERS unloading hfcpci module leads
to the following splat:
[ 250.215892] ODEBUG: assert_init not available (active state 0) object: ffffffffc01a3dc0 object type: timer_list hint: 0x0
[ 250.217520] WARNING: CPU: 0 PID: 233 at lib/debugobjects.c:612 debug_print_object+0x1b6/0x2c0
[ 250.218775] Modules linked in: hfcpci(-) mISDN_core
[ 250.219537] CPU: 0 UID: 0 PID: 233 Comm: rmmod Not tainted 6.17.0-rc2-g6f713187ac98 #2 PREEMPT(voluntary)
[ 250.220940] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 250.222377] RIP: 0010:debug_print_object+0x1b6/0x2c0
[ 250.223131] Code: fc ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 75 4f 41 56 48 8b 14 dd a0 4e 01 9f 48 89 ee 48 c7 c7 20 46 01 9f e8 cb 84d
[ 250.225805] RSP: 0018:ffff888015ea7c08 EFLAGS: 00010286
[ 250.226608] RAX: 0000000000000000 RBX: 0000000000000005 RCX: ffffffff9be93a95
[ 250.227708] RDX: 1ffff1100d945138 RSI: 0000000000000008 RDI: ffff88806ca289c0
[ 250.228993] RBP: ffffffff9f014a00 R08: 0000000000000001 R09: ffffed1002bd4f39
[ 250.230043] R10: ffff888015ea79cf R11: 0000000000000001 R12: 0000000000000001
[ 250.231185] R13: ffffffff9eea0520 R14: 0000000000000000 R15: ffff888015ea7cc8
[ 250.232454] FS: 00007f3208f01540(0000) GS:ffff8880caf5a000(0000) knlGS:0000000000000000
[ 250.233851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 250.234856] CR2: 00007f32090a7421 CR3: 0000000004d63000 CR4: 00000000000006f0
[ 250.236117] Call Trace:
[ 250.236599] <TASK>
[ 250.236967] ? trace_irq_enable.constprop.0+0xd4/0x130
[ 250.237920] debug_object_assert_init+0x1f6/0x310
[ 250.238762] ? __pfx_debug_object_assert_init+0x10/0x10
[ 250.239658] ? __lock_acquire+0xdea/0x1c70
[ 250.240369] __try_to_del_timer_sync+0x69/0x140
[ 250.241172] ? __pfx___try_to_del_timer_sync+0x10/0x10
[ 250.242058] ? __timer_delete_sync+0xc6/0x120
[ 250.242842] ? lock_acquire+0x30/0x80
[ 250.243474] ? __timer_delete_sync+0xc6/0x120
[ 250.244262] __timer_delete_sync+0x98/0x120
[ 250.245015] HFC_cleanup+0x10/0x20 [hfcpci]
[ 250.245704] __do_sys_delete_module+0x348/0x510
[ 250.246461] ? __pfx___do_sys_delete_module+0x10/0x10
[ 250.247338] do_syscall_64+0xc1/0x360
[ 250.247924] entry_SYSCALL_64_after_hwframe+0x77/0x7f
Fix this by initializing hfc_tl timer with DEFINE_TIMER macro.
Also, use mod_timer instead of manual timeout update. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/sched: Check scheduler work queue before calling timeout handling
During an IGT GPU reset test we see again oops despite of
commit 0c8c901aaaebc9 (drm/sched: Check scheduler ready before calling
timeout handling).
It uses ready condition whether to call drm_sched_fault which unwind
the TDR leads to GPU reset.
However it looks the ready condition is overloaded with other meanings,
for example, for the following stack is related GPU reset :
0 gfx_v9_0_cp_gfx_start
1 gfx_v9_0_cp_gfx_resume
2 gfx_v9_0_cp_resume
3 gfx_v9_0_hw_init
4 gfx_v9_0_resume
5 amdgpu_device_ip_resume_phase2
does the following:
/* start the ring */
gfx_v9_0_cp_gfx_start(adev);
ring->sched.ready = true;
The same approach is for other ASICs as well :
gfx_v8_0_cp_gfx_resume
gfx_v10_0_kiq_resume, etc...
As a result, our GPU reset test causes GPU fault which calls unconditionally gfx_v9_0_fault
and then drm_sched_fault. However now it depends on whether the interrupt service routine
drm_sched_fault is executed after gfx_v9_0_cp_gfx_start is completed which sets the ready
field of the scheduler to true even for uninitialized schedulers and causes oops vs
no fault or when ISR drm_sched_fault is completed prior gfx_v9_0_cp_gfx_start and
NULL pointer dereference does not occur.
Use the field timeout_wq to prevent oops for uninitialized schedulers.
The field could be initialized by the work queue of resetting the domain.
v1: Corrections to commit message (Luben) |
| In the Linux kernel, the following vulnerability has been resolved:
can: bcm: bcm_tx_setup(): fix KMSAN uninit-value in vfs_write
Syzkaller reported the following issue:
=====================================================
BUG: KMSAN: uninit-value in aio_rw_done fs/aio.c:1520 [inline]
BUG: KMSAN: uninit-value in aio_write+0x899/0x950 fs/aio.c:1600
aio_rw_done fs/aio.c:1520 [inline]
aio_write+0x899/0x950 fs/aio.c:1600
io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019
__do_sys_io_submit fs/aio.c:2078 [inline]
__se_sys_io_submit+0x293/0x770 fs/aio.c:2048
__x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook mm/slab.h:766 [inline]
slab_alloc_node mm/slub.c:3452 [inline]
__kmem_cache_alloc_node+0x71f/0xce0 mm/slub.c:3491
__do_kmalloc_node mm/slab_common.c:967 [inline]
__kmalloc+0x11d/0x3b0 mm/slab_common.c:981
kmalloc_array include/linux/slab.h:636 [inline]
bcm_tx_setup+0x80e/0x29d0 net/can/bcm.c:930
bcm_sendmsg+0x3a2/0xce0 net/can/bcm.c:1351
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
sock_write_iter+0x495/0x5e0 net/socket.c:1108
call_write_iter include/linux/fs.h:2189 [inline]
aio_write+0x63a/0x950 fs/aio.c:1600
io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019
__do_sys_io_submit fs/aio.c:2078 [inline]
__se_sys_io_submit+0x293/0x770 fs/aio.c:2048
__x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
CPU: 1 PID: 5034 Comm: syz-executor350 Not tainted 6.2.0-rc6-syzkaller-80422-geda666ff2276 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/12/2023
=====================================================
We can follow the call chain and find that 'bcm_tx_setup' function
calls 'memcpy_from_msg' to copy some content to the newly allocated
frame of 'op->frames'. After that the 'len' field of copied structure
being compared with some constant value (64 or 8). However, if
'memcpy_from_msg' returns an error, we will compare some uninitialized
memory. This triggers 'uninit-value' issue.
This patch will add 'memcpy_from_msg' possible errors processing to
avoid uninit-value issue.
Tested via syzkaller |
| In the Linux kernel, the following vulnerability has been resolved:
of/fdt: run soc memory setup when early_init_dt_scan_memory fails
If memory has been found early_init_dt_scan_memory now returns 1. If
it hasn't found any memory it will return 0, allowing other memory
setup mechanisms to carry on.
Previously early_init_dt_scan_memory always returned 0 without
distinguishing between any kind of memory setup being done or not. Any
code path after the early_init_dt_scan memory call in the ramips
plat_mem_setup code wouldn't be executed anymore. Making
early_init_dt_scan_memory the only way to initialize the memory.
Some boards, including my mt7621 based Cudy X6 board, depend on memory
initialization being done via the soc_info.mem_detect function
pointer. Those wouldn't be able to obtain memory and panic the kernel
during early bootup with the message "early_init_dt_alloc_memory_arch:
Failed to allocate 12416 bytes align=0x40". |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_{ldisc,serdev}: check percpu_init_rwsem() failure
syzbot is reporting NULL pointer dereference at hci_uart_tty_close() [1],
for rcu_sync_enter() is called without rcu_sync_init() due to
hci_uart_tty_open() ignoring percpu_init_rwsem() failure.
While we are at it, fix that hci_uart_register_device() ignores
percpu_init_rwsem() failure and hci_uart_unregister_device() does not
call percpu_free_rwsem(). |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: init quota for 'old.inode' in 'ext4_rename'
Syzbot found the following issue:
ext4_parse_param: s_want_extra_isize=128
ext4_inode_info_init: s_want_extra_isize=32
ext4_rename: old.inode=ffff88823869a2c8 old.dir=ffff888238699828 new.inode=ffff88823869d7e8 new.dir=ffff888238699828
__ext4_mark_inode_dirty: inode=ffff888238699828 ea_isize=32 want_ea_size=128
__ext4_mark_inode_dirty: inode=ffff88823869a2c8 ea_isize=32 want_ea_size=128
ext4_xattr_block_set: inode=ffff88823869a2c8
------------[ cut here ]------------
WARNING: CPU: 13 PID: 2234 at fs/ext4/xattr.c:2070 ext4_xattr_block_set.cold+0x22/0x980
Modules linked in:
RIP: 0010:ext4_xattr_block_set.cold+0x22/0x980
RSP: 0018:ffff888227d3f3b0 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffff88823007a000 RCX: 0000000000000000
RDX: 0000000000000a03 RSI: 0000000000000040 RDI: ffff888230078178
RBP: 0000000000000000 R08: 000000000000002c R09: ffffed1075c7df8e
R10: ffff8883ae3efc6b R11: ffffed1075c7df8d R12: 0000000000000000
R13: ffff88823869a2c8 R14: ffff8881012e0460 R15: dffffc0000000000
FS: 00007f350ac1f740(0000) GS:ffff8883ae200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f350a6ed6a0 CR3: 0000000237456000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? ext4_xattr_set_entry+0x3b7/0x2320
? ext4_xattr_block_set+0x0/0x2020
? ext4_xattr_set_entry+0x0/0x2320
? ext4_xattr_check_entries+0x77/0x310
? ext4_xattr_ibody_set+0x23b/0x340
ext4_xattr_move_to_block+0x594/0x720
ext4_expand_extra_isize_ea+0x59a/0x10f0
__ext4_expand_extra_isize+0x278/0x3f0
__ext4_mark_inode_dirty.cold+0x347/0x410
ext4_rename+0xed3/0x174f
vfs_rename+0x13a7/0x2510
do_renameat2+0x55d/0x920
__x64_sys_rename+0x7d/0xb0
do_syscall_64+0x3b/0xa0
entry_SYSCALL_64_after_hwframe+0x72/0xdc
As 'ext4_rename' will modify 'old.inode' ctime and mark inode dirty,
which may trigger expand 'extra_isize' and allocate block. If inode
didn't init quota will lead to warning. To solve above issue, init
'old.inode' firstly in 'ext4_rename'. |
| Multiple issues including the use of uninitialized ressources [CWE-908] and excessive iteration [CWE-834] vulnerabilities vulnerability in Fortinet allows a VPN user to corrupt memory potentially leading to code or commands execution via specifically crafted requests. |
| Dell Unisphere for PowerMax, version(s) prior to 10.2.0.9 and PowerMax version(s) prior to PowerMax 9.2.4.15, contain an Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection') vulnerability. A high privileged attacker with remote access could potentially exploit this vulnerability, leading to Script injection. |
| Panda3D versions up to and including 1.10.16 deploy-stub contains a denial of service vulnerability due to unbounded stack allocation. The deploy-stub executable allocates argv_copy and argv_copy2 using alloca() based directly on the attacker-controlled argc value without validation. Supplying a large number of command-line arguments can exhaust stack space and propagate uninitialized stack memory into Python interpreter initialization, resulting in a reliable crash and undefined behavior. |
| In the Linux kernel, the following vulnerability has been resolved:
pNFS: Fix uninited ptr deref in block/scsi layout
The error occurs on the third attempt to encode extents. When function
ext_tree_prepare_commit() reallocates a larger buffer to retry encoding
extents, the "layoutupdate_pages" page array is initialized only after the
retry loop. But ext_tree_free_commitdata() is called on every iteration
and tries to put pages in the array, thus dereferencing uninitialized
pointers.
An additional problem is that there is no limit on the maximum possible
buffer_size. When there are too many extents, the client may create a
layoutcommit that is larger than the maximum possible RPC size accepted
by the server.
During testing, we observed two typical scenarios. First, one memory page
for extents is enough when we work with small files, append data to the
end of the file, or preallocate extents before writing. But when we fill
a new large file without preallocating, the number of extents can be huge,
and counting the number of written extents in ext_tree_encode_commit()
does not help much. Since this number increases even more between
unlocking and locking of ext_tree, the reallocated buffer may not be
large enough again and again. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: linearize cloned gso packets in sctp_rcv
A cloned head skb still shares these frag skbs in fraglist with the
original head skb. It's not safe to access these frag skbs.
syzbot reported two use-of-uninitialized-memory bugs caused by this:
BUG: KMSAN: uninit-value in sctp_inq_pop+0x15b7/0x1920 net/sctp/inqueue.c:211
sctp_inq_pop+0x15b7/0x1920 net/sctp/inqueue.c:211
sctp_assoc_bh_rcv+0x1a7/0xc50 net/sctp/associola.c:998
sctp_inq_push+0x2ef/0x380 net/sctp/inqueue.c:88
sctp_backlog_rcv+0x397/0xdb0 net/sctp/input.c:331
sk_backlog_rcv+0x13b/0x420 include/net/sock.h:1122
__release_sock+0x1da/0x330 net/core/sock.c:3106
release_sock+0x6b/0x250 net/core/sock.c:3660
sctp_wait_for_connect+0x487/0x820 net/sctp/socket.c:9360
sctp_sendmsg_to_asoc+0x1ec1/0x1f00 net/sctp/socket.c:1885
sctp_sendmsg+0x32b9/0x4a80 net/sctp/socket.c:2031
inet_sendmsg+0x25a/0x280 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:718 [inline]
and
BUG: KMSAN: uninit-value in sctp_assoc_bh_rcv+0x34e/0xbc0 net/sctp/associola.c:987
sctp_assoc_bh_rcv+0x34e/0xbc0 net/sctp/associola.c:987
sctp_inq_push+0x2a3/0x350 net/sctp/inqueue.c:88
sctp_backlog_rcv+0x3c7/0xda0 net/sctp/input.c:331
sk_backlog_rcv+0x142/0x420 include/net/sock.h:1148
__release_sock+0x1d3/0x330 net/core/sock.c:3213
release_sock+0x6b/0x270 net/core/sock.c:3767
sctp_wait_for_connect+0x458/0x820 net/sctp/socket.c:9367
sctp_sendmsg_to_asoc+0x223a/0x2260 net/sctp/socket.c:1886
sctp_sendmsg+0x3910/0x49f0 net/sctp/socket.c:2032
inet_sendmsg+0x269/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:712 [inline]
This patch fixes it by linearizing cloned gso packets in sctp_rcv(). |
| In the Linux kernel, the following vulnerability has been resolved:
pptp: ensure minimal skb length in pptp_xmit()
Commit aabc6596ffb3 ("net: ppp: Add bound checking for skb data
on ppp_sync_txmung") fixed ppp_sync_txmunge()
We need a similar fix in pptp_xmit(), otherwise we might
read uninit data as reported by syzbot.
BUG: KMSAN: uninit-value in pptp_xmit+0xc34/0x2720 drivers/net/ppp/pptp.c:193
pptp_xmit+0xc34/0x2720 drivers/net/ppp/pptp.c:193
ppp_channel_bridge_input drivers/net/ppp/ppp_generic.c:2290 [inline]
ppp_input+0x1d6/0xe60 drivers/net/ppp/ppp_generic.c:2314
pppoe_rcv_core+0x1e8/0x760 drivers/net/ppp/pppoe.c:379
sk_backlog_rcv+0x142/0x420 include/net/sock.h:1148
__release_sock+0x1d3/0x330 net/core/sock.c:3213
release_sock+0x6b/0x270 net/core/sock.c:3767
pppoe_sendmsg+0x15d/0xcb0 drivers/net/ppp/pppoe.c:904
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x330/0x3d0 net/socket.c:727
____sys_sendmsg+0x893/0xd80 net/socket.c:2566
___sys_sendmsg+0x271/0x3b0 net/socket.c:2620
__sys_sendmmsg+0x2d9/0x7c0 net/socket.c:2709 |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix KMSAN uninit-value in extent_info usage
KMSAN reported a use of uninitialized value in `__is_extent_mergeable()`
and `__is_back_mergeable()` via the read extent tree path.
The root cause is that `get_read_extent_info()` only initializes three
fields (`fofs`, `blk`, `len`) of `struct extent_info`, leaving the
remaining fields uninitialized. This leads to undefined behavior
when those fields are accessed later, especially during
extent merging.
Fix it by zero-initializing the `extent_info` struct before population. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized memory in do_insn_ioctl() and do_insnlist_ioctl()
syzbot reports a KMSAN kernel-infoleak in `do_insn_ioctl()`. A kernel
buffer is allocated to hold `insn->n` samples (each of which is an
`unsigned int`). For some instruction types, `insn->n` samples are
copied back to user-space, unless an error code is being returned. The
problem is that not all the instruction handlers that need to return
data to userspace fill in the whole `insn->n` samples, so that there is
an information leak. There is a similar syzbot report for
`do_insnlist_ioctl()`, although it does not have a reproducer for it at
the time of writing.
One culprit is `insn_rw_emulate_bits()` which is used as the handler for
`INSN_READ` or `INSN_WRITE` instructions for subdevices that do not have
a specific handler for that instruction, but do have an `INSN_BITS`
handler. For `INSN_READ` it only fills in at most 1 sample, so if
`insn->n` is greater than 1, the remaining `insn->n - 1` samples copied
to userspace will be uninitialized kernel data.
Another culprit is `vm80xx_ai_insn_read()` in the "vm80xx" driver. It
never returns an error, even if it fails to fill the buffer.
Fix it in `do_insn_ioctl()` and `do_insnlist_ioctl()` by making sure
that uninitialized parts of the allocated buffer are zeroed before
handling each instruction.
Thanks to Arnaud Lecomte for their fix to `do_insn_ioctl()`. That fix
replaced the call to `kmalloc_array()` with `kcalloc()`, but it is not
always necessary to clear the whole buffer. |
| Use of uninitialized resource in Windows Remote Access Connection Manager allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: clear initialized flag for deinit-ed srng lists
In a number of cases we see kernel panics on resume due
to ath11k kernel page fault, which happens under the
following circumstances:
1) First ath11k_hal_dump_srng_stats() call
Last interrupt received for each group:
ath11k_pci 0000:01:00.0: group_id 0 22511ms before
ath11k_pci 0000:01:00.0: group_id 1 14440788ms before
[..]
ath11k_pci 0000:01:00.0: failed to receive control response completion, polling..
ath11k_pci 0000:01:00.0: Service connect timeout
ath11k_pci 0000:01:00.0: failed to connect to HTT: -110
ath11k_pci 0000:01:00.0: failed to start core: -110
ath11k_pci 0000:01:00.0: firmware crashed: MHI_CB_EE_RDDM
ath11k_pci 0000:01:00.0: already resetting count 2
ath11k_pci 0000:01:00.0: failed to wait wlan mode request (mode 4): -110
ath11k_pci 0000:01:00.0: qmi failed to send wlan mode off: -110
ath11k_pci 0000:01:00.0: failed to reconfigure driver on crash recovery
[..]
2) At this point reconfiguration fails (we have 2 resets) and
ath11k_core_reconfigure_on_crash() calls ath11k_hal_srng_deinit()
which destroys srng lists. However, it does not reset per-list
->initialized flag.
3) Second ath11k_hal_dump_srng_stats() call sees stale ->initialized
flag and attempts to dump srng stats:
Last interrupt received for each group:
ath11k_pci 0000:01:00.0: group_id 0 66785ms before
ath11k_pci 0000:01:00.0: group_id 1 14485062ms before
ath11k_pci 0000:01:00.0: group_id 2 14485062ms before
ath11k_pci 0000:01:00.0: group_id 3 14485062ms before
ath11k_pci 0000:01:00.0: group_id 4 14780845ms before
ath11k_pci 0000:01:00.0: group_id 5 14780845ms before
ath11k_pci 0000:01:00.0: group_id 6 14485062ms before
ath11k_pci 0000:01:00.0: group_id 7 66814ms before
ath11k_pci 0000:01:00.0: group_id 8 68997ms before
ath11k_pci 0000:01:00.0: group_id 9 67588ms before
ath11k_pci 0000:01:00.0: group_id 10 69511ms before
BUG: unable to handle page fault for address: ffffa007404eb010
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 100000067 P4D 100000067 PUD 10022d067 PMD 100b01067 PTE 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:ath11k_hal_dump_srng_stats+0x2b4/0x3b0 [ath11k]
Call Trace:
<TASK>
? __die_body+0xae/0xb0
? page_fault_oops+0x381/0x3e0
? exc_page_fault+0x69/0xa0
? asm_exc_page_fault+0x22/0x30
? ath11k_hal_dump_srng_stats+0x2b4/0x3b0 [ath11k (HASH:6cea 4)]
ath11k_qmi_driver_event_work+0xbd/0x1050 [ath11k (HASH:6cea 4)]
worker_thread+0x389/0x930
kthread+0x149/0x170
Clear per-list ->initialized flag in ath11k_hal_srng_deinit(). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, ktls: Fix data corruption when using bpf_msg_pop_data() in ktls
When sending plaintext data, we initially calculated the corresponding
ciphertext length. However, if we later reduced the plaintext data length
via socket policy, we failed to recalculate the ciphertext length.
This results in transmitting buffers containing uninitialized data during
ciphertext transmission.
This causes uninitialized bytes to be appended after a complete
"Application Data" packet, leading to errors on the receiving end when
parsing TLS record. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized data in insn_rw_emulate_bits()
For Comedi `INSN_READ` and `INSN_WRITE` instructions on "digital"
subdevices (subdevice types `COMEDI_SUBD_DI`, `COMEDI_SUBD_DO`, and
`COMEDI_SUBD_DIO`), it is common for the subdevice driver not to have
`insn_read` and `insn_write` handler functions, but to have an
`insn_bits` handler function for handling Comedi `INSN_BITS`
instructions. In that case, the subdevice's `insn_read` and/or
`insn_write` function handler pointers are set to point to the
`insn_rw_emulate_bits()` function by `__comedi_device_postconfig()`.
For `INSN_WRITE`, `insn_rw_emulate_bits()` currently assumes that the
supplied `data[0]` value is a valid copy from user memory. It will at
least exist because `do_insnlist_ioctl()` and `do_insn_ioctl()` in
"comedi_fops.c" ensure at lease `MIN_SAMPLES` (16) elements are
allocated. However, if `insn->n` is 0 (which is allowable for
`INSN_READ` and `INSN_WRITE` instructions, then `data[0]` may contain
uninitialized data, and certainly contains invalid data, possibly from a
different instruction in the array of instructions handled by
`do_insnlist_ioctl()`. This will result in an incorrect value being
written to the digital output channel (or to the digital input/output
channel if configured as an output), and may be reflected in the
internal saved state of the channel.
Fix it by returning 0 early if `insn->n` is 0, before reaching the code
that accesses `data[0]`. Previously, the function always returned 1 on
success, but it is supposed to be the number of data samples actually
read or written up to `insn->n`, which is 0 in this case. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: reject TDLS operations when station is not associated
syzbot triggered a WARN in ieee80211_tdls_oper() by sending
NL80211_TDLS_ENABLE_LINK immediately after NL80211_CMD_CONNECT,
before association completed and without prior TDLS setup.
This left internal state like sdata->u.mgd.tdls_peer uninitialized,
leading to a WARN_ON() in code paths that assumed it was valid.
Reject the operation early if not in station mode or not associated. |