| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Double free vulnerability in the multi-mode input module.
Impact: Successful exploitation of this vulnerability may affect the input function. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sysfs: Fix attempting to call device_add multiple times
device_add shall not be called multiple times as stated in its
documentation:
'Do not call this routine or device_register() more than once for
any device structure'
Syzkaller reports a bug as follows [1]:
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:33!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
[...]
Call Trace:
<TASK>
__list_add include/linux/list.h:69 [inline]
list_add_tail include/linux/list.h:102 [inline]
kobj_kset_join lib/kobject.c:164 [inline]
kobject_add_internal+0x18f/0x8f0 lib/kobject.c:214
kobject_add_varg lib/kobject.c:358 [inline]
kobject_add+0x150/0x1c0 lib/kobject.c:410
device_add+0x368/0x1e90 drivers/base/core.c:3452
hci_conn_add_sysfs+0x9b/0x1b0 net/bluetooth/hci_sysfs.c:53
hci_le_cis_estabilished_evt+0x57c/0xae0 net/bluetooth/hci_event.c:6799
hci_le_meta_evt+0x2b8/0x510 net/bluetooth/hci_event.c:7110
hci_event_func net/bluetooth/hci_event.c:7440 [inline]
hci_event_packet+0x63d/0xfd0 net/bluetooth/hci_event.c:7495
hci_rx_work+0xae7/0x1230 net/bluetooth/hci_core.c:4007
process_one_work+0x991/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: under NFSv4.1, fix double svc_xprt_put on rpc_create failure
On error situation `clp->cl_cb_conn.cb_xprt` should not be given
a reference to the xprt otherwise both client cleanup and the
error handling path of the caller call to put it. Better to
delay handing over the reference to a later branch.
[ 72.530665] refcount_t: underflow; use-after-free.
[ 72.531933] WARNING: CPU: 0 PID: 173 at lib/refcount.c:28 refcount_warn_saturate+0xcf/0x120
[ 72.533075] Modules linked in: nfsd(OE) nfsv4(OE) nfsv3(OE) nfs(OE) lockd(OE) compat_nfs_ssc(OE) nfs_acl(OE) rpcsec_gss_krb5(OE) auth_rpcgss(OE) rpcrdma(OE) dns_resolver fscache netfs grace rdma_cm iw_cm ib_cm sunrpc(OE) mlx5_ib mlx5_core mlxfw pci_hyperv_intf ib_uverbs ib_core xt_MASQUERADE nf_conntrack_netlink nft_counter xt_addrtype nft_compat br_netfilter bridge stp llc nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set overlay nf_tables nfnetlink crct10dif_pclmul crc32_pclmul ghash_clmulni_intel xfs serio_raw virtio_net virtio_blk net_failover failover fuse [last unloaded: sunrpc]
[ 72.540389] CPU: 0 PID: 173 Comm: kworker/u16:5 Tainted: G OE 5.15.82-dan #1
[ 72.541511] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-3.module+el8.7.0+1084+97b81f61 04/01/2014
[ 72.542717] Workqueue: nfsd4_callbacks nfsd4_run_cb_work [nfsd]
[ 72.543575] RIP: 0010:refcount_warn_saturate+0xcf/0x120
[ 72.544299] Code: 55 00 0f 0b 5d e9 01 50 98 00 80 3d 75 9e 39 08 00 0f 85 74 ff ff ff 48 c7 c7 e8 d1 60 8e c6 05 61 9e 39 08 01 e8 f6 51 55 00 <0f> 0b 5d e9 d9 4f 98 00 80 3d 4b 9e 39 08 00 0f 85 4c ff ff ff 48
[ 72.546666] RSP: 0018:ffffb3f841157cf0 EFLAGS: 00010286
[ 72.547393] RAX: 0000000000000026 RBX: ffff89ac6231d478 RCX: 0000000000000000
[ 72.548324] RDX: ffff89adb7c2c2c0 RSI: ffff89adb7c205c0 RDI: ffff89adb7c205c0
[ 72.549271] RBP: ffffb3f841157cf0 R08: 0000000000000000 R09: c0000000ffefffff
[ 72.550209] R10: 0000000000000001 R11: ffffb3f841157ad0 R12: ffff89ac6231d180
[ 72.551142] R13: ffff89ac6231d478 R14: ffff89ac40c06180 R15: ffff89ac6231d4b0
[ 72.552089] FS: 0000000000000000(0000) GS:ffff89adb7c00000(0000) knlGS:0000000000000000
[ 72.553175] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 72.553934] CR2: 0000563a310506a8 CR3: 0000000109a66000 CR4: 0000000000350ef0
[ 72.554874] Call Trace:
[ 72.555278] <TASK>
[ 72.555614] svc_xprt_put+0xaf/0xe0 [sunrpc]
[ 72.556276] nfsd4_process_cb_update.isra.11+0xb7/0x410 [nfsd]
[ 72.557087] ? update_load_avg+0x82/0x610
[ 72.557652] ? cpuacct_charge+0x60/0x70
[ 72.558212] ? dequeue_entity+0xdb/0x3e0
[ 72.558765] ? queued_spin_unlock+0x9/0x20
[ 72.559358] nfsd4_run_cb_work+0xfc/0x270 [nfsd]
[ 72.560031] process_one_work+0x1df/0x390
[ 72.560600] worker_thread+0x37/0x3b0
[ 72.561644] ? process_one_work+0x390/0x390
[ 72.562247] kthread+0x12f/0x150
[ 72.562710] ? set_kthread_struct+0x50/0x50
[ 72.563309] ret_from_fork+0x22/0x30
[ 72.563818] </TASK>
[ 72.564189] ---[ end trace 031117b1c72ec616 ]---
[ 72.566019] list_add corruption. next->prev should be prev (ffff89ac4977e538), but was ffff89ac4763e018. (next=ffff89ac4763e018).
[ 72.567647] ------------[ cut here ]------------ |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4.2: Rework scratch handling for READ_PLUS (again)
I found that the read code might send multiple requests using the same
nfs_pgio_header, but nfs4_proc_read_setup() is only called once. This is
how we ended up occasionally double-freeing the scratch buffer, but also
means we set a NULL pointer but non-zero length to the xdr scratch
buffer. This results in an oops the first time decoding needs to copy
something to scratch, which frequently happens when decoding READ_PLUS
hole segments.
I fix this by moving scratch handling into the pageio read code. I
provide a function to allocate scratch space for decoding read replies,
and free the scratch buffer when the nfs_pgio_header is freed. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fec: Better handle pm_runtime_get() failing in .remove()
In the (unlikely) event that pm_runtime_get() (disguised as
pm_runtime_resume_and_get()) fails, the remove callback returned an
error early. The problem with this is that the driver core ignores the
error value and continues removing the device. This results in a
resource leak. Worse the devm allocated resources are freed and so if a
callback of the driver is called later the register mapping is already
gone which probably results in a crash. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: avoid double free special payload
If a discard request needs to be retried, and that retry may fail before
a new special payload is added, a double free will result. Clear the
RQF_SPECIAL_LOAD when the request is cleaned. |
| A double free vulnerability [CWE-415] vulnerability in Fortinet FortiOS 7.4.0, FortiOS 7.2.0 through 7.2.5, FortiOS 7.0.0 through 7.0.12, FortiOS 6.4 all versions, FortiPAM 1.1 all versions, FortiPAM 1.0 all versions, FortiProxy 7.4.0 through 7.4.1, FortiProxy 7.2.0 through 7.2.7, FortiProxy 7.0.0 through 7.0.13 allows a privileged attacker to execute code or commands via crafted HTTP or HTTPs requests. |
| A double free vulnerability [CWE-415] vulnerability in Fortinet FortiOS 6.4 all versions may allow a privileged attacker to execute code or commands via crafted HTTP or HTTPs requests. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to 7.1.2-9 and 6.9.13-34, there is a vulnerability in ImageMagick’s Magick++ layer that manifests when Options::fontFamily is invoked with an empty string. Clearing a font family calls RelinquishMagickMemory on _drawInfo->font, freeing the font string but leaving _drawInfo->font pointing to freed memory while _drawInfo->family is set to that (now-invalid) pointer. Any later cleanup or reuse of _drawInfo->font re-frees or dereferences dangling memory. DestroyDrawInfo and other setters (Options::font, Image::font) assume _drawInfo->font remains valid, so destruction or subsequent updates trigger crashes or heap corruption. This vulnerability is fixed in 7.1.2-9 and 6.9.13-34. |
| Multiple Cisco products are affected by a vulnerability in the processing of DCE/RPC requests that could allow an unauthenticated, remote attacker to cause the Snort 3 Detection Engine to leak sensitive information or to restart, resulting in an interruption of packet inspection.
This vulnerability is due to an error in buffer handling logic when processing DCE/RPC requests, which can result in a buffer use-after-free read. An attacker could exploit this vulnerability by sending a large number of DCE/RPC requests through an established connection that is inspected by Snort 3. A successful exploit could allow the attacker to unexpectedly restart the Snort 3 Detection Engine, which could cause a denial of service (DoS). |
| A flaw was found in the key export functionality of libssh. The issue occurs in the internal function responsible for converting cryptographic keys into serialized formats. During error handling, a memory structure is freed but not cleared, leading to a potential double free issue if an additional failure occurs later in the function. This condition may result in heap corruption or application instability in low-memory scenarios, posing a risk to system reliability where key export operations are performed. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Microsoft Brokering File System allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: bfa: Double-free fix
When the bfad_im_probe() function fails during initialization, the memory
pointed to by bfad->im is freed without setting bfad->im to NULL.
Subsequently, during driver uninstallation, when the state machine enters
the bfad_sm_stopping state and calls the bfad_im_probe_undo() function,
it attempts to free the memory pointed to by bfad->im again, thereby
triggering a double-free vulnerability.
Set bfad->im to NULL if probing fails. |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: bus: Fix double free in driver API bus_register()
For bus_register(), any error which happens after kset_register() will
cause that @priv are freed twice, fixed by setting @priv with NULL after
the first free. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: clean up our handling of refs == 0 in snapshot delete
In reada we BUG_ON(refs == 0), which could be unkind since we aren't
holding a lock on the extent leaf and thus could get a transient
incorrect answer. In walk_down_proc we also BUG_ON(refs == 0), which
could happen if we have extent tree corruption. Change that to return
-EUCLEAN. In do_walk_down() we catch this case and handle it correctly,
however we return -EIO, which -EUCLEAN is a more appropriate error code.
Finally in walk_up_proc we have the same BUG_ON(refs == 0), so convert
that to proper error handling. Also adjust the error message so we can
actually do something with the information. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix double free of the ha->vp_map pointer
Coverity scan reported potential risk of double free of the pointer
ha->vp_map. ha->vp_map was freed in qla2x00_mem_alloc(), and again freed
in function qla2x00_mem_free(ha).
Assign NULL to vp_map and kfree take care of NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-fc: do not wait in vain when unloading module
The module exit path has race between deleting all controllers and
freeing 'left over IDs'. To prevent double free a synchronization
between nvme_delete_ctrl and ida_destroy has been added by the initial
commit.
There is some logic around trying to prevent from hanging forever in
wait_for_completion, though it does not handling all cases. E.g.
blktests is able to reproduce the situation where the module unload
hangs forever.
If we completely rely on the cleanup code executed from the
nvme_delete_ctrl path, all IDs will be freed eventually. This makes
calling ida_destroy unnecessary. We only have to ensure that all
nvme_delete_ctrl code has been executed before we leave
nvme_fc_exit_module. This is done by flushing the nvme_delete_wq
workqueue.
While at it, remove the unused nvme_fc_wq workqueue too. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: dev-replace: properly validate device names
There's a syzbot report that device name buffers passed to device
replace are not properly checked for string termination which could lead
to a read out of bounds in getname_kernel().
Add a helper that validates both source and target device name buffers.
For devid as the source initialize the buffer to empty string in case
something tries to read it later.
This was originally analyzed and fixed in a different way by Edward Adam
Davis (see links). |
| In the Linux kernel, the following vulnerability has been resolved:
igb: Fix igb_down hung on surprise removal
In a setup where a Thunderbolt hub connects to Ethernet and a display
through USB Type-C, users may experience a hung task timeout when they
remove the cable between the PC and the Thunderbolt hub.
This is because the igb_down function is called multiple times when
the Thunderbolt hub is unplugged. For example, the igb_io_error_detected
triggers the first call, and the igb_remove triggers the second call.
The second call to igb_down will block at napi_synchronize.
Here's the call trace:
__schedule+0x3b0/0xddb
? __mod_timer+0x164/0x5d3
schedule+0x44/0xa8
schedule_timeout+0xb2/0x2a4
? run_local_timers+0x4e/0x4e
msleep+0x31/0x38
igb_down+0x12c/0x22a [igb 6615058754948bfde0bf01429257eb59f13030d4]
__igb_close+0x6f/0x9c [igb 6615058754948bfde0bf01429257eb59f13030d4]
igb_close+0x23/0x2b [igb 6615058754948bfde0bf01429257eb59f13030d4]
__dev_close_many+0x95/0xec
dev_close_many+0x6e/0x103
unregister_netdevice_many+0x105/0x5b1
unregister_netdevice_queue+0xc2/0x10d
unregister_netdev+0x1c/0x23
igb_remove+0xa7/0x11c [igb 6615058754948bfde0bf01429257eb59f13030d4]
pci_device_remove+0x3f/0x9c
device_release_driver_internal+0xfe/0x1b4
pci_stop_bus_device+0x5b/0x7f
pci_stop_bus_device+0x30/0x7f
pci_stop_bus_device+0x30/0x7f
pci_stop_and_remove_bus_device+0x12/0x19
pciehp_unconfigure_device+0x76/0xe9
pciehp_disable_slot+0x6e/0x131
pciehp_handle_presence_or_link_change+0x7a/0x3f7
pciehp_ist+0xbe/0x194
irq_thread_fn+0x22/0x4d
? irq_thread+0x1fd/0x1fd
irq_thread+0x17b/0x1fd
? irq_forced_thread_fn+0x5f/0x5f
kthread+0x142/0x153
? __irq_get_irqchip_state+0x46/0x46
? kthread_associate_blkcg+0x71/0x71
ret_from_fork+0x1f/0x30
In this case, igb_io_error_detected detaches the network interface
and requests a PCIE slot reset, however, the PCIE reset callback is
not being invoked and thus the Ethernet connection breaks down.
As the PCIE error in this case is a non-fatal one, requesting a
slot reset can be avoided.
This patch fixes the task hung issue and preserves Ethernet
connection by ignoring non-fatal PCIE errors. |
| Double free in Windows Bluetooth Service allows an authorized attacker to elevate privileges locally. |