| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| dr_flac, an audio decoder within the dr_libs toolset, contains an integer overflow vulnerability flaw due to trusting the totalPCMFrameCount field from FLAC metadata before calculating buffer size, allowing an attacker with a specially crafted file to perform DoS against programs using the tool. |
| SumatraPDF is a multi-format reader for Windows. All versions contain an off-by-one error in the validation code that only triggers with exactly 2 records, causing an integer underflow in the size calculation. This bug exists in PalmDbReader::GetRecord when opening a crafted Mobi file, resulting in an out-of-bounds heap read that crashes the app. There are no published fixes at the time of publication. |
| A flaw was found in glib. Missing validation of offset and count parameters in the g_buffered_input_stream_peek() function can lead to an integer overflow during length calculation. When specially crafted values are provided, this overflow results in an incorrect size being passed to memcpy(), triggering a buffer overflow. This can cause application crashes, leading to a Denial of Service (DoS). |
| A signed integer overflow in docopt.cpp v0.6.2 (LeafPattern::match in docopt_private.h) when merging occurrence counters (e.g., default LONG_MAX + first user "-v/--verbose") can cause counter wrap (negative/unbounded semantics) and lead to logic/policy bypass in applications that rely on occurrence-based limits, rate-gating, or safety toggles. In hardened builds (e.g., UBSan or -ftrapv), the overflow may also result in process abort (DoS). |
| A flaw was found in vsftpd. This vulnerability allows a denial of service (DoS) via an integer overflow in the ls command parameter parsing, triggered by a remote, authenticated attacker sending a crafted STAT command with a specific byte sequence. |
| In PHP versions:8.1.* before 8.1.34, 8.2.* before 8.2.30, 8.3.* before 8.3.29, 8.4.* before 8.4.16, 8.5.* before 8.5.1, a heap buffer overflow occurs in array_merge() when the total element count of packed arrays exceeds 32-bit limits or HT_MAX_SIZE, due to an integer overflow in the precomputation of element counts using zend_hash_num_elements(). This may lead to memory corruption or crashes and affect the integrity and availability of the target server. |
| In the Linux kernel, the following vulnerability has been resolved:
dm-stripe: fix a possible integer overflow
There's a possible integer overflow in stripe_io_hints if we have too
large chunk size. Test if the overflow happened, and if it did, don't set
limits->io_min and limits->io_opt; |
| A Use of Incorrect Byte Ordering
vulnerability
in the Routing Protocol Daemon (rpd) of Juniper Networks Junos OS on SRX300 Series allows an unauthenticated, network-based attacker to cause a Denial-of-Service (DoS).
When a BGP update is received over an established BGP session which contains a specific, valid, optional, transitive path attribute, rpd will crash and restart.
This issue affects eBGP and iBGP over IPv4 and IPv6.
This issue affects:
Junos OS:
* 22.1 versions from 22.1R1 before 22.2R3-S4,
* 22.3 versions before 22.3R3-S3,
* 22.4 versions before 22.4R3-S2,
* 23.2 versions before 23.2R2,
* 23.4 versions before 23.4R2. |
| Sandbox escape due to integer overflow in the Graphics component. This vulnerability affects Firefox < 147, Firefox ESR < 115.32, Firefox ESR < 140.7, Thunderbird < 147, and Thunderbird < 140.7. |
| ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. An integer underflow vulnerability has been identified in the ESP-NOW protocol implementation within the ESP Wi-Fi component of versions 5.4.1, 5.3.3, 5.2.5, and 5.1.6 of the ESP-IDF framework. This issue stems from insufficient validation of user-supplied data length in the packet receive function. Under certain conditions, this may lead to out-of-bounds memory access and may allow arbitrary memory write operations. On systems without a memory protection scheme, this behavior could potentially be used to achieve remote code execution (RCE) on the target device. In versions 5.4.2, 5.3.4, 5.2.6, and 5.1.6, ESP-NOW has added more comprehensive validation logic on user-supplied data length during packet reception to prevent integer underflow caused by negative value calculations. For ESP-IDF v5.3 and earlier, a workaround can be applied by validating that the `data_len` parameter received in the RX callback (registered via `esp_now_register_recv_cb()`) is a positive value before further processing. For ESP-IDF v5.4 and later, no application-level workaround is available. Users are advised to upgrade to a patched version of ESP-IDF to take advantage of the built-in mitigation. |
| A vulnerability was found in libtiff due to multiple potential integer overflows in raw2tiff.c. This flaw allows remote attackers to cause a denial of service or possibly execute an arbitrary code via a crafted tiff image, which triggers a heap-based buffer overflow. |
| LibTIFF is vulnerable to an integer overflow. This flaw allows remote attackers to cause a denial of service (application crash) or possibly execute an arbitrary code via a crafted tiff image, which triggers a heap-based buffer overflow. |
| A vulnerability has been identified in the libarchive library, specifically within the archive_read_format_rar_seek_data() function. This flaw involves an integer overflow that can ultimately lead to a double-free condition. Exploiting a double-free vulnerability can result in memory corruption, enabling an attacker to execute arbitrary code or cause a denial-of-service condition. |
| LIBPNG is a reference library for use in applications that read, create, and manipulate PNG (Portable Network Graphics) raster image files. From 1.6.26 to 1.6.53, there is an integer truncation in the libpng simplified write API functions png_write_image_16bit and png_write_image_8bit causes heap buffer over-read when the caller provides a negative row stride (for bottom-up image layouts) or a stride exceeding 65535 bytes. The bug was introduced in libpng 1.6.26 (October 2016) by casts added to silence compiler warnings on 16-bit systems. This vulnerability is fixed in 1.6.54. |
| A flaw was found in GIMP. An integer overflow vulnerability exists in the GIMP "Despeckle" plug-in. The issue occurs due to unchecked multiplication of image dimensions, such as width, height, and bytes-per-pixel (img_bpp), which can result in allocating insufficient memory and subsequently performing out-of-bounds writes. This issue could lead to heap corruption, a potential denial of service (DoS), or arbitrary code execution in certain scenarios. |
| GIMP PNM File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PNM files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-28273. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/MCE/AMD: Use an u64 for bank_map
Thee maximum number of MCA banks is 64 (MAX_NR_BANKS), see
a0bc32b3cacf ("x86/mce: Increase maximum number of banks to 64").
However, the bank_map which contains a bitfield of which banks to
initialize is of type unsigned int and that overflows when those bit
numbers are >= 32, leading to UBSAN complaining correctly:
UBSAN: shift-out-of-bounds in arch/x86/kernel/cpu/mce/amd.c:1365:38
shift exponent 32 is too large for 32-bit type 'int'
Change the bank_map to a u64 and use the proper BIT_ULL() macro when
modifying bits in there.
[ bp: Rewrite commit message. ] |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix off-by-one errors in fast-commit block filling
Due to several different off-by-one errors, or perhaps due to a late
change in design that wasn't fully reflected in the code that was
actually merged, there are several very strange constraints on how
fast-commit blocks are filled with tlv entries:
- tlvs must start at least 10 bytes before the end of the block, even
though the minimum tlv length is 8. Otherwise, the replay code will
ignore them. (BUG: ext4_fc_reserve_space() could violate this
requirement if called with a len of blocksize - 9 or blocksize - 8.
Fortunately, this doesn't seem to happen currently.)
- tlvs must end at least 1 byte before the end of the block. Otherwise
the replay code will consider them to be invalid. This quirk
contributed to a bug (fixed by an earlier commit) where uninitialized
memory was being leaked to disk in the last byte of blocks.
Also, strangely these constraints don't apply to the replay code in
e2fsprogs, which will accept any tlvs in the blocks (with no bounds
checks at all, but that is a separate issue...).
Given that this all seems to be a bug, let's fix it by just filling
blocks with tlv entries in the natural way.
Note that old kernels will be unable to replay fast-commit journals
created by kernels that have this commit. |
| In Eclipse Paho Go MQTT v3.1 library (paho.mqtt.golang) versions <=1.5.0 UTF-8 encoded strings, passed into the library, may be incorrectly encoded if their length exceeds 65535 bytes. This may lead to unexpected content in packets sent to the server (for example, part of an MQTT topic may leak into the message body in a PUBLISH packet).
The issue arises because the length of the data passed in was converted from an int64/int32 (depending upon CPU) to an int16 without checks for overflows. The int16 length was then written, followed by the data (e.g. topic). This meant that when the data (e.g. topic) was over 65535 bytes then the amount of data written exceeds what the length field indicates. This could lead to a corrupt packet, or mean that the excess data leaks into another field (e.g. topic leaks into message body). |
| Passing too large an alignment to the memalign suite of functions (memalign, posix_memalign, aligned_alloc) in the GNU C Library version 2.30 to 2.42 may result in an integer overflow, which could consequently result in a heap corruption.
Note that the attacker must have control over both, the size as well as the alignment arguments of the memalign function to be able to exploit this. The size parameter must be close enough to PTRDIFF_MAX so as to overflow size_t along with the large alignment argument. This limits the malicious inputs for the alignment for memalign to the range [1<<62+ 1, 1<<63] and exactly 1<<63 for posix_memalign and aligned_alloc.
Typically the alignment argument passed to such functions is a known constrained quantity (e.g. page size, block size, struct sizes) and is not attacker controlled, because of which this may not be easily exploitable in practice. An application bug could potentially result in the input alignment being too large, e.g. due to a different buffer overflow or integer overflow in the application or its dependent libraries, but that is again an uncommon usage pattern given typical sources of alignments. |