Search Results (16689 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-38494 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: HID: core: do not bypass hid_hw_raw_request hid_hw_raw_request() is actually useful to ensure the provided buffer and length are valid. Directly calling in the low level transport driver function bypassed those checks and allowed invalid paramto be used.
CVE-2023-53510 1 Linux 1 Linux Kernel 2026-01-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix handling of lrbp->cmd ufshcd_queuecommand() may be called two times in a row for a SCSI command before it is completed. Hence make the following changes: - In the functions that submit a command, do not check the old value of lrbp->cmd nor clear lrbp->cmd in error paths. - In ufshcd_release_scsi_cmd(), do not clear lrbp->cmd. See also scsi_send_eh_cmnd(). This commit prevents that the following appears if a command times out: WARNING: at drivers/ufs/core/ufshcd.c:2965 ufshcd_queuecommand+0x6f8/0x9a8 Call trace: ufshcd_queuecommand+0x6f8/0x9a8 scsi_send_eh_cmnd+0x2c0/0x960 scsi_eh_test_devices+0x100/0x314 scsi_eh_ready_devs+0xd90/0x114c scsi_error_handler+0x2b4/0xb70 kthread+0x16c/0x1e0
CVE-2023-53511 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix fget leak when fs don't support nowait buffered read Heming reported a BUG when using io_uring doing link-cp on ocfs2. [1] Do the following steps can reproduce this BUG: mount -t ocfs2 /dev/vdc /mnt/ocfs2 cp testfile /mnt/ocfs2/ ./link-cp /mnt/ocfs2/testfile /mnt/ocfs2/testfile.1 umount /mnt/ocfs2 Then umount will fail, and it outputs: umount: /mnt/ocfs2: target is busy. While tracing umount, it blames mnt_get_count() not return as expected. Do a deep investigation for fget()/fput() on related code flow, I've finally found that fget() leaks since ocfs2 doesn't support nowait buffered read. io_issue_sqe |-io_assign_file // do fget() first |-io_read |-io_iter_do_read |-ocfs2_file_read_iter // return -EOPNOTSUPP |-kiocb_done |-io_rw_done |-__io_complete_rw_common // set REQ_F_REISSUE |-io_resubmit_prep |-io_req_prep_async // override req->file, leak happens This was introduced by commit a196c78b5443 in v5.18. Fix it by don't re-assign req->file if it has already been assigned. [1] https://lore.kernel.org/ocfs2-devel/ab580a75-91c8-d68a-3455-40361be1bfa8@linux.alibaba.com/T/#t
CVE-2023-53513 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nbd: fix incomplete validation of ioctl arg We tested and found an alarm caused by nbd_ioctl arg without verification. The UBSAN warning calltrace like below: UBSAN: Undefined behaviour in fs/buffer.c:1709:35 signed integer overflow: -9223372036854775808 - 1 cannot be represented in type 'long long int' CPU: 3 PID: 2523 Comm: syz-executor.0 Not tainted 4.19.90 #1 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x0/0x3f0 arch/arm64/kernel/time.c:78 show_stack+0x28/0x38 arch/arm64/kernel/traps.c:158 __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x170/0x1dc lib/dump_stack.c:118 ubsan_epilogue+0x18/0xb4 lib/ubsan.c:161 handle_overflow+0x188/0x1dc lib/ubsan.c:192 __ubsan_handle_sub_overflow+0x34/0x44 lib/ubsan.c:206 __block_write_full_page+0x94c/0xa20 fs/buffer.c:1709 block_write_full_page+0x1f0/0x280 fs/buffer.c:2934 blkdev_writepage+0x34/0x40 fs/block_dev.c:607 __writepage+0x68/0xe8 mm/page-writeback.c:2305 write_cache_pages+0x44c/0xc70 mm/page-writeback.c:2240 generic_writepages+0xdc/0x148 mm/page-writeback.c:2329 blkdev_writepages+0x2c/0x38 fs/block_dev.c:2114 do_writepages+0xd4/0x250 mm/page-writeback.c:2344 The reason for triggering this warning is __block_write_full_page() -> i_size_read(inode) - 1 overflow. inode->i_size is assigned in __nbd_ioctl() -> nbd_set_size() -> bytesize. We think it is necessary to limit the size of arg to prevent errors. Moreover, __nbd_ioctl() -> nbd_add_socket(), arg will be cast to int. Assuming the value of arg is 0x80000000000000001) (on a 64-bit machine), it will become 1 after the coercion, which will return unexpected results. Fix it by adding checks to prevent passing in too large numbers.
CVE-2023-53515 1 Linux 1 Linux Kernel 2026-01-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: virtio-mmio: don't break lifecycle of vm_dev vm_dev has a separate lifecycle because it has a 'struct device' embedded. Thus, having a release callback for it is correct. Allocating the vm_dev struct with devres totally breaks this protection, though. Instead of waiting for the vm_dev release callback, the memory is freed when the platform_device is removed. Resulting in a use-after-free when finally the callback is to be called. To easily see the problem, compile the kernel with CONFIG_DEBUG_KOBJECT_RELEASE and unbind with sysfs. The fix is easy, don't use devres in this case. Found during my research about object lifetime problems.
CVE-2023-53516 1 Linux 1 Linux Kernel 2026-01-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: macvlan: add forgotten nla_policy for IFLA_MACVLAN_BC_CUTOFF The previous commit 954d1fa1ac93 ("macvlan: Add netlink attribute for broadcast cutoff") added one additional attribute named IFLA_MACVLAN_BC_CUTOFF to allow broadcast cutfoff. However, it forgot to describe the nla_policy at macvlan_policy (drivers/net/macvlan.c). Hence, this suppose NLA_S32 (4 bytes) integer can be faked as empty (0 bytes) by a malicious user, which could leads to OOB in heap just like CVE-2023-3773. To fix it, this commit just completes the nla_policy description for IFLA_MACVLAN_BC_CUTOFF. This enforces the length check and avoids the potential OOB read.
CVE-2023-53517 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tipc: do not update mtu if msg_max is too small in mtu negotiation When doing link mtu negotiation, a malicious peer may send Activate msg with a very small mtu, e.g. 4 in Shuang's testing, without checking for the minimum mtu, l->mtu will be set to 4 in tipc_link_proto_rcv(), then n->links[bearer_id].mtu is set to 4294967228, which is a overflow of '4 - INT_H_SIZE - EMSG_OVERHEAD' in tipc_link_mss(). With tipc_link.mtu = 4, tipc_link_xmit() kept printing the warning: tipc: Too large msg, purging xmit list 1 5 0 40 4! tipc: Too large msg, purging xmit list 1 15 0 60 4! And with tipc_link_entry.mtu 4294967228, a huge skb was allocated in named_distribute(), and when purging it in tipc_link_xmit(), a crash was even caused: general protection fault, probably for non-canonical address 0x2100001011000dd: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 0 Comm: swapper/0 Kdump: loaded Not tainted 6.3.0.neta #19 RIP: 0010:kfree_skb_list_reason+0x7e/0x1f0 Call Trace: <IRQ> skb_release_data+0xf9/0x1d0 kfree_skb_reason+0x40/0x100 tipc_link_xmit+0x57a/0x740 [tipc] tipc_node_xmit+0x16c/0x5c0 [tipc] tipc_named_node_up+0x27f/0x2c0 [tipc] tipc_node_write_unlock+0x149/0x170 [tipc] tipc_rcv+0x608/0x740 [tipc] tipc_udp_recv+0xdc/0x1f0 [tipc] udp_queue_rcv_one_skb+0x33e/0x620 udp_unicast_rcv_skb.isra.72+0x75/0x90 __udp4_lib_rcv+0x56d/0xc20 ip_protocol_deliver_rcu+0x100/0x2d0 This patch fixes it by checking the new mtu against tipc_bearer_min_mtu(), and not updating mtu if it is too small.
CVE-2023-53519 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: v4l2-mem2mem: add lock to protect parameter num_rdy Getting below error when using KCSAN to check the driver. Adding lock to protect parameter num_rdy when getting the value with function: v4l2_m2m_num_src_bufs_ready/v4l2_m2m_num_dst_bufs_ready. kworker/u16:3: [name:report&]BUG: KCSAN: data-race in v4l2_m2m_buf_queue kworker/u16:3: [name:report&] kworker/u16:3: [name:report&]read-write to 0xffffff8105f35b94 of 1 bytes by task 20865 on cpu 7: kworker/u16:3:  v4l2_m2m_buf_queue+0xd8/0x10c
CVE-2023-53520 1 Linux 1 Linux Kernel 2026-01-26 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix hci_suspend_sync crash If hci_unregister_dev() frees the hci_dev object but hci_suspend_notifier may still be accessing it, it can cause the program to crash. Here's the call trace: <4>[102152.653246] Call Trace: <4>[102152.653254] hci_suspend_sync+0x109/0x301 [bluetooth] <4>[102152.653259] hci_suspend_dev+0x78/0xcd [bluetooth] <4>[102152.653263] hci_suspend_notifier+0x42/0x7a [bluetooth] <4>[102152.653268] notifier_call_chain+0x43/0x6b <4>[102152.653271] __blocking_notifier_call_chain+0x48/0x69 <4>[102152.653273] __pm_notifier_call_chain+0x22/0x39 <4>[102152.653276] pm_suspend+0x287/0x57c <4>[102152.653278] state_store+0xae/0xe5 <4>[102152.653281] kernfs_fop_write+0x109/0x173 <4>[102152.653284] __vfs_write+0x16f/0x1a2 <4>[102152.653287] ? selinux_file_permission+0xca/0x16f <4>[102152.653289] ? security_file_permission+0x36/0x109 <4>[102152.653291] vfs_write+0x114/0x21d <4>[102152.653293] __x64_sys_write+0x7b/0xdb <4>[102152.653296] do_syscall_64+0x59/0x194 <4>[102152.653299] entry_SYSCALL_64_after_hwframe+0x5c/0xc1 This patch holds the reference count of the hci_dev object while processing it in hci_suspend_notifier to avoid potential crash caused by the race condition.
CVE-2023-53521 1 Linux 1 Linux Kernel 2026-01-26 7.1 High
In the Linux kernel, the following vulnerability has been resolved: scsi: ses: Fix slab-out-of-bounds in ses_intf_remove() A fix for: BUG: KASAN: slab-out-of-bounds in ses_intf_remove+0x23f/0x270 [ses] Read of size 8 at addr ffff88a10d32e5d8 by task rmmod/12013 When edev->components is zero, accessing edev->component[0] members is wrong.
CVE-2023-53522 1 Linux 1 Linux Kernel 2026-01-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: cgroup,freezer: hold cpu_hotplug_lock before freezer_mutex syzbot is reporting circular locking dependency between cpu_hotplug_lock and freezer_mutex, for commit f5d39b020809 ("freezer,sched: Rewrite core freezer logic") replaced atomic_inc() in freezer_apply_state() with static_branch_inc() which holds cpu_hotplug_lock. cpu_hotplug_lock => cgroup_threadgroup_rwsem => freezer_mutex cgroup_file_write() { cgroup_procs_write() { __cgroup_procs_write() { cgroup_procs_write_start() { cgroup_attach_lock() { cpus_read_lock() { percpu_down_read(&cpu_hotplug_lock); } percpu_down_write(&cgroup_threadgroup_rwsem); } } cgroup_attach_task() { cgroup_migrate() { cgroup_migrate_execute() { freezer_attach() { mutex_lock(&freezer_mutex); (...snipped...) } } } } (...snipped...) } } } freezer_mutex => cpu_hotplug_lock cgroup_file_write() { freezer_write() { freezer_change_state() { mutex_lock(&freezer_mutex); freezer_apply_state() { static_branch_inc(&freezer_active) { static_key_slow_inc() { cpus_read_lock(); static_key_slow_inc_cpuslocked(); cpus_read_unlock(); } } } mutex_unlock(&freezer_mutex); } } } Swap locking order by moving cpus_read_lock() in freezer_apply_state() to before mutex_lock(&freezer_mutex) in freezer_change_state().
CVE-2023-53523 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: fix time stamp counter initialization If the gs_usb device driver is unloaded (or unbound) before the interface is shut down, the USB stack first calls the struct usb_driver::disconnect and then the struct net_device_ops::ndo_stop callback. In gs_usb_disconnect() all pending bulk URBs are killed, i.e. no more RX'ed CAN frames are send from the USB device to the host. Later in gs_can_close() a reset control message is send to each CAN channel to remove the controller from the CAN bus. In this race window the USB device can still receive CAN frames from the bus and internally queue them to be send to the host. At least in the current version of the candlelight firmware, the queue of received CAN frames is not emptied during the reset command. After loading (or binding) the gs_usb driver, new URBs are submitted during the struct net_device_ops::ndo_open callback and the candlelight firmware starts sending its already queued CAN frames to the host. However, this scenario was not considered when implementing the hardware timestamp function. The cycle counter/time counter infrastructure is set up (gs_usb_timestamp_init()) after the USBs are submitted, resulting in a NULL pointer dereference if timecounter_cyc2time() (via the call chain: gs_usb_receive_bulk_callback() -> gs_usb_set_timestamp() -> gs_usb_skb_set_timestamp()) is called too early. Move the gs_usb_timestamp_init() function before the URBs are submitted to fix this problem. For a comprehensive solution, we need to consider gs_usb devices with more than 1 channel. The cycle counter/time counter infrastructure is setup per channel, but the RX URBs are per device. Once gs_can_open() of _a_ channel has been called, and URBs have been submitted, the gs_usb_receive_bulk_callback() can be called for _all_ available channels, even for channels that are not running, yet. As cycle counter/time counter has not set up, this will again lead to a NULL pointer dereference. Convert the cycle counter/time counter from a "per channel" to a "per device" functionality. Also set it up, before submitting any URBs to the device. Further in gs_usb_receive_bulk_callback(), don't process any URBs for not started CAN channels, only resubmit the URB.
CVE-2023-53524 1 Linux 1 Linux Kernel 2026-01-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: pcie: Fix integer overflow in iwl_write_to_user_buf An integer overflow occurs in the iwl_write_to_user_buf() function, which is called by the iwl_dbgfs_monitor_data_read() function. static bool iwl_write_to_user_buf(char __user *user_buf, ssize_t count, void *buf, ssize_t *size, ssize_t *bytes_copied) { int buf_size_left = count - *bytes_copied; buf_size_left = buf_size_left - (buf_size_left % sizeof(u32)); if (*size > buf_size_left) *size = buf_size_left; If the user passes a SIZE_MAX value to the "ssize_t count" parameter, the ssize_t count parameter is assigned to "int buf_size_left". Then compare "*size" with "buf_size_left" . Here, "buf_size_left" is a negative number, so "*size" is assigned "buf_size_left" and goes into the third argument of the copy_to_user function, causing a heap overflow. This is not a security vulnerability because iwl_dbgfs_monitor_data_read() is a debugfs operation with 0400 privileges.
CVE-2023-53503 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: allow ext4_get_group_info() to fail Previously, ext4_get_group_info() would treat an invalid group number as BUG(), since in theory it should never happen. However, if a malicious attaker (or fuzzer) modifies the superblock via the block device while it is the file system is mounted, it is possible for s_first_data_block to get set to a very large number. In that case, when calculating the block group of some block number (such as the starting block of a preallocation region), could result in an underflow and very large block group number. Then the BUG_ON check in ext4_get_group_info() would fire, resutling in a denial of service attack that can be triggered by root or someone with write access to the block device. For a quality of implementation perspective, it's best that even if the system administrator does something that they shouldn't, that it will not trigger a BUG. So instead of BUG'ing, ext4_get_group_info() will call ext4_error and return NULL. We also add fallback code in all of the callers of ext4_get_group_info() that it might NULL. Also, since ext4_get_group_info() was already borderline to be an inline function, un-inline it. The results in a next reduction of the compiled text size of ext4 by roughly 2k.
CVE-2022-50488 1 Linux 1 Linux Kernel 2026-01-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: block, bfq: fix possible uaf for 'bfqq->bic' Our test report a uaf for 'bfqq->bic' in 5.10: ================================================================== BUG: KASAN: use-after-free in bfq_select_queue+0x378/0xa30 CPU: 6 PID: 2318352 Comm: fsstress Kdump: loaded Not tainted 5.10.0-60.18.0.50.h602.kasan.eulerosv2r11.x86_64 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-20220320_160524-szxrtosci10000 04/01/2014 Call Trace: bfq_select_queue+0x378/0xa30 bfq_dispatch_request+0xe8/0x130 blk_mq_do_dispatch_sched+0x62/0xb0 __blk_mq_sched_dispatch_requests+0x215/0x2a0 blk_mq_sched_dispatch_requests+0x8f/0xd0 __blk_mq_run_hw_queue+0x98/0x180 __blk_mq_delay_run_hw_queue+0x22b/0x240 blk_mq_run_hw_queue+0xe3/0x190 blk_mq_sched_insert_requests+0x107/0x200 blk_mq_flush_plug_list+0x26e/0x3c0 blk_finish_plug+0x63/0x90 __iomap_dio_rw+0x7b5/0x910 iomap_dio_rw+0x36/0x80 ext4_dio_read_iter+0x146/0x190 [ext4] ext4_file_read_iter+0x1e2/0x230 [ext4] new_sync_read+0x29f/0x400 vfs_read+0x24e/0x2d0 ksys_read+0xd5/0x1b0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x61/0xc6 Commit 3bc5e683c67d ("bfq: Split shared queues on move between cgroups") changes that move process to a new cgroup will allocate a new bfqq to use, however, the old bfqq and new bfqq can point to the same bic: 1) Initial state, two process with io in the same cgroup. Process 1 Process 2 (BIC1) (BIC2) | Λ | Λ | | | | V | V | bfqq1 bfqq2 2) bfqq1 is merged to bfqq2. Process 1 Process 2 (BIC1) (BIC2) | | \-------------\| V bfqq1 bfqq2(coop) 3) Process 1 exit, then issue new io(denoce IOA) from Process 2. (BIC2) | Λ | | V | bfqq2(coop) 4) Before IOA is completed, move Process 2 to another cgroup and issue io. Process 2 (BIC2) Λ |\--------------\ | V bfqq2 bfqq3 Now that BIC2 points to bfqq3, while bfqq2 and bfqq3 both point to BIC2. If all the requests are completed, and Process 2 exit, BIC2 will be freed while there is no guarantee that bfqq2 will be freed before BIC2. Fix the problem by clearing bfqq->bic while bfqq is detached from bic.
CVE-2025-40040 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/ksm: fix flag-dropping behavior in ksm_madvise syzkaller discovered the following crash: (kernel BUG) [ 44.607039] ------------[ cut here ]------------ [ 44.607422] kernel BUG at mm/userfaultfd.c:2067! [ 44.608148] Oops: invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN NOPTI [ 44.608814] CPU: 1 UID: 0 PID: 2475 Comm: reproducer Not tainted 6.16.0-rc6 #1 PREEMPT(none) [ 44.609635] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [ 44.610695] RIP: 0010:userfaultfd_release_all+0x3a8/0x460 <snip other registers, drop unreliable trace> [ 44.617726] Call Trace: [ 44.617926] <TASK> [ 44.619284] userfaultfd_release+0xef/0x1b0 [ 44.620976] __fput+0x3f9/0xb60 [ 44.621240] fput_close_sync+0x110/0x210 [ 44.622222] __x64_sys_close+0x8f/0x120 [ 44.622530] do_syscall_64+0x5b/0x2f0 [ 44.622840] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 44.623244] RIP: 0033:0x7f365bb3f227 Kernel panics because it detects UFFD inconsistency during userfaultfd_release_all(). Specifically, a VMA which has a valid pointer to vma->vm_userfaultfd_ctx, but no UFFD flags in vma->vm_flags. The inconsistency is caused in ksm_madvise(): when user calls madvise() with MADV_UNMEARGEABLE on a VMA that is registered for UFFD in MINOR mode, it accidentally clears all flags stored in the upper 32 bits of vma->vm_flags. Assuming x86_64 kernel build, unsigned long is 64-bit and unsigned int and int are 32-bit wide. This setup causes the following mishap during the &= ~VM_MERGEABLE assignment. VM_MERGEABLE is a 32-bit constant of type unsigned int, 0x8000'0000. After ~ is applied, it becomes 0x7fff'ffff unsigned int, which is then promoted to unsigned long before the & operation. This promotion fills upper 32 bits with leading 0s, as we're doing unsigned conversion (and even for a signed conversion, this wouldn't help as the leading bit is 0). & operation thus ends up AND-ing vm_flags with 0x0000'0000'7fff'ffff instead of intended 0xffff'ffff'7fff'ffff and hence accidentally clears the upper 32-bits of its value. Fix it by changing `VM_MERGEABLE` constant to unsigned long, using the BIT() macro. Note: other VM_* flags are not affected: This only happens to the VM_MERGEABLE flag, as the other VM_* flags are all constants of type int and after ~ operation, they end up with leading 1 and are thus converted to unsigned long with leading 1s. Note 2: After commit 31defc3b01d9 ("userfaultfd: remove (VM_)BUG_ON()s"), this is no longer a kernel BUG, but a WARNING at the same place: [ 45.595973] WARNING: CPU: 1 PID: 2474 at mm/userfaultfd.c:2067 but the root-cause (flag-drop) remains the same. [akpm@linux-foundation.org: rust bindgen wasn't able to handle BIT(), from Miguel]
CVE-2025-68196 1 Linux 1 Linux Kernel 2026-01-26 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Cache streams targeting link when performing LT automation [WHY] Last LT automation update can cause crash by referencing current_state and calling into dc_update_planes_and_stream which may clobber current_state. [HOW] Cache relevant stream pointers and iterate through them instead of relying on the current_state.
CVE-2025-40335 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: validate userq input args This will help on validating the userq input args, and rejecting for the invalid userq request at the IOCTLs first place.
CVE-2025-40334 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: validate userq buffer virtual address and size It needs to validate the userq object virtual address to determine whether it is residented in a valid vm mapping.
CVE-2025-40332 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix mmap write lock not release If mmap write lock is taken while draining retry fault, mmap write lock is not released because svm_range_restore_pages calls mmap_read_unlock then returns. This causes deadlock and system hangs later because mmap read or write lock cannot be taken. Downgrade mmap write lock to read lock if draining retry fault fix this bug.