| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
staging: media: max96712: fix kernel oops when removing module
The following kernel oops is thrown when trying to remove the max96712
module:
Unable to handle kernel paging request at virtual address 00007375746174db
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000010af89000
[00007375746174db] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
Modules linked in: crct10dif_ce polyval_ce mxc_jpeg_encdec flexcan
snd_soc_fsl_sai snd_soc_fsl_asoc_card snd_soc_fsl_micfil dwc_mipi_csi2
imx_csi_formatter polyval_generic v4l2_jpeg imx_pcm_dma can_dev
snd_soc_imx_audmux snd_soc_wm8962 snd_soc_imx_card snd_soc_fsl_utils
max96712(C-) rpmsg_ctrl rpmsg_char pwm_fan fuse
[last unloaded: imx8_isi]
CPU: 0 UID: 0 PID: 754 Comm: rmmod
Tainted: G C 6.12.0-rc6-06364-g327fec852c31 #17
Tainted: [C]=CRAP
Hardware name: NXP i.MX95 19X19 board (DT)
pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : led_put+0x1c/0x40
lr : v4l2_subdev_put_privacy_led+0x48/0x58
sp : ffff80008699bbb0
x29: ffff80008699bbb0 x28: ffff00008ac233c0 x27: 0000000000000000
x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
x23: ffff000080cf1170 x22: ffff00008b53bd00 x21: ffff8000822ad1c8
x20: ffff000080ff5c00 x19: ffff00008b53be40 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000004 x13: ffff0000800f8010 x12: 0000000000000000
x11: ffff000082acf5c0 x10: ffff000082acf478 x9 : ffff0000800f8010
x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d
x5 : 8080808000000000 x4 : 0000000000000020 x3 : 00000000553a3dc1
x2 : ffff00008ac233c0 x1 : ffff00008ac233c0 x0 : ff00737574617473
Call trace:
led_put+0x1c/0x40
v4l2_subdev_put_privacy_led+0x48/0x58
v4l2_async_unregister_subdev+0x2c/0x1a4
max96712_remove+0x1c/0x38 [max96712]
i2c_device_remove+0x2c/0x9c
device_remove+0x4c/0x80
device_release_driver_internal+0x1cc/0x228
driver_detach+0x4c/0x98
bus_remove_driver+0x6c/0xbc
driver_unregister+0x30/0x60
i2c_del_driver+0x54/0x64
max96712_i2c_driver_exit+0x18/0x1d0 [max96712]
__arm64_sys_delete_module+0x1a4/0x290
invoke_syscall+0x48/0x10c
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x34/0xd8
el0t_64_sync_handler+0x120/0x12c
el0t_64_sync+0x190/0x194
Code: f9000bf3 aa0003f3 f9402800 f9402000 (f9403400)
---[ end trace 0000000000000000 ]---
This happens because in v4l2_i2c_subdev_init(), the i2c_set_cliendata()
is called again and the data is overwritten to point to sd, instead of
priv. So, in remove(), the wrong pointer is passed to
v4l2_async_unregister_subdev(), leading to a crash. |
| In the Linux kernel, the following vulnerability has been resolved:
tee: optee: Fix kernel panic caused by incorrect error handling
The error path while failing to register devices on the TEE bus has a
bug leading to kernel panic as follows:
[ 15.398930] Unable to handle kernel paging request at virtual address ffff07ed00626d7c
[ 15.406913] Mem abort info:
[ 15.409722] ESR = 0x0000000096000005
[ 15.413490] EC = 0x25: DABT (current EL), IL = 32 bits
[ 15.418814] SET = 0, FnV = 0
[ 15.421878] EA = 0, S1PTW = 0
[ 15.425031] FSC = 0x05: level 1 translation fault
[ 15.429922] Data abort info:
[ 15.432813] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 15.438310] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 15.443372] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 15.448697] swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000d9e3e000
[ 15.455413] [ffff07ed00626d7c] pgd=1800000bffdf9003, p4d=1800000bffdf9003, pud=0000000000000000
[ 15.464146] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
Commit 7269cba53d90 ("tee: optee: Fix supplicant based device enumeration")
lead to the introduction of this bug. So fix it appropriately. |
| In the Linux kernel, the following vulnerability has been resolved:
firewire: nosy: ensure user_length is taken into account when fetching packet contents
Ensure that packet_buffer_get respects the user_length provided. If
the length of the head packet exceeds the user_length, packet_buffer_get
will now return 0 to signify to the user that no data were read
and a larger buffer size is required. Helps prevent user space overflows. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: l2cap: fix null-ptr-deref in l2cap_chan_timeout
There is a race condition between l2cap_chan_timeout() and
l2cap_chan_del(). When we use l2cap_chan_del() to delete the
channel, the chan->conn will be set to null. But the conn could
be dereferenced again in the mutex_lock() of l2cap_chan_timeout().
As a result the null pointer dereference bug will happen. The
KASAN report triggered by POC is shown below:
[ 472.074580] ==================================================================
[ 472.075284] BUG: KASAN: null-ptr-deref in mutex_lock+0x68/0xc0
[ 472.075308] Write of size 8 at addr 0000000000000158 by task kworker/0:0/7
[ 472.075308]
[ 472.075308] CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.9.0-rc5-00356-g78c0094a146b #36
[ 472.075308] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4
[ 472.075308] Workqueue: events l2cap_chan_timeout
[ 472.075308] Call Trace:
[ 472.075308] <TASK>
[ 472.075308] dump_stack_lvl+0x137/0x1a0
[ 472.075308] print_report+0x101/0x250
[ 472.075308] ? __virt_addr_valid+0x77/0x160
[ 472.075308] ? mutex_lock+0x68/0xc0
[ 472.075308] kasan_report+0x139/0x170
[ 472.075308] ? mutex_lock+0x68/0xc0
[ 472.075308] kasan_check_range+0x2c3/0x2e0
[ 472.075308] mutex_lock+0x68/0xc0
[ 472.075308] l2cap_chan_timeout+0x181/0x300
[ 472.075308] process_one_work+0x5d2/0xe00
[ 472.075308] worker_thread+0xe1d/0x1660
[ 472.075308] ? pr_cont_work+0x5e0/0x5e0
[ 472.075308] kthread+0x2b7/0x350
[ 472.075308] ? pr_cont_work+0x5e0/0x5e0
[ 472.075308] ? kthread_blkcg+0xd0/0xd0
[ 472.075308] ret_from_fork+0x4d/0x80
[ 472.075308] ? kthread_blkcg+0xd0/0xd0
[ 472.075308] ret_from_fork_asm+0x11/0x20
[ 472.075308] </TASK>
[ 472.075308] ==================================================================
[ 472.094860] Disabling lock debugging due to kernel taint
[ 472.096136] BUG: kernel NULL pointer dereference, address: 0000000000000158
[ 472.096136] #PF: supervisor write access in kernel mode
[ 472.096136] #PF: error_code(0x0002) - not-present page
[ 472.096136] PGD 0 P4D 0
[ 472.096136] Oops: 0002 [#1] PREEMPT SMP KASAN NOPTI
[ 472.096136] CPU: 0 PID: 7 Comm: kworker/0:0 Tainted: G B 6.9.0-rc5-00356-g78c0094a146b #36
[ 472.096136] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4
[ 472.096136] Workqueue: events l2cap_chan_timeout
[ 472.096136] RIP: 0010:mutex_lock+0x88/0xc0
[ 472.096136] Code: be 08 00 00 00 e8 f8 23 1f fd 4c 89 f7 be 08 00 00 00 e8 eb 23 1f fd 42 80 3c 23 00 74 08 48 88
[ 472.096136] RSP: 0018:ffff88800744fc78 EFLAGS: 00000246
[ 472.096136] RAX: 0000000000000000 RBX: 1ffff11000e89f8f RCX: ffffffff8457c865
[ 472.096136] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffff88800744fc78
[ 472.096136] RBP: 0000000000000158 R08: ffff88800744fc7f R09: 1ffff11000e89f8f
[ 472.096136] R10: dffffc0000000000 R11: ffffed1000e89f90 R12: dffffc0000000000
[ 472.096136] R13: 0000000000000158 R14: ffff88800744fc78 R15: ffff888007405a00
[ 472.096136] FS: 0000000000000000(0000) GS:ffff88806d200000(0000) knlGS:0000000000000000
[ 472.096136] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 472.096136] CR2: 0000000000000158 CR3: 000000000da32000 CR4: 00000000000006f0
[ 472.096136] Call Trace:
[ 472.096136] <TASK>
[ 472.096136] ? __die_body+0x8d/0xe0
[ 472.096136] ? page_fault_oops+0x6b8/0x9a0
[ 472.096136] ? kernelmode_fixup_or_oops+0x20c/0x2a0
[ 472.096136] ? do_user_addr_fault+0x1027/0x1340
[ 472.096136] ? _printk+0x7a/0xa0
[ 472.096136] ? mutex_lock+0x68/0xc0
[ 472.096136] ? add_taint+0x42/0xd0
[ 472.096136] ? exc_page_fault+0x6a/0x1b0
[ 472.096136] ? asm_exc_page_fault+0x26/0x30
[ 472.096136] ? mutex_lock+0x75/0xc0
[ 472.096136] ? mutex_lock+0x88/0xc0
[ 472.096136] ? mutex_lock+0x75/0xc0
[ 472.096136] l2cap_chan_timeo
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix use-after-free bugs caused by sco_sock_timeout
When the sco connection is established and then, the sco socket
is releasing, timeout_work will be scheduled to judge whether
the sco disconnection is timeout. The sock will be deallocated
later, but it is dereferenced again in sco_sock_timeout. As a
result, the use-after-free bugs will happen. The root cause is
shown below:
Cleanup Thread | Worker Thread
sco_sock_release |
sco_sock_close |
__sco_sock_close |
sco_sock_set_timer |
schedule_delayed_work |
sco_sock_kill | (wait a time)
sock_put(sk) //FREE | sco_sock_timeout
| sock_hold(sk) //USE
The KASAN report triggered by POC is shown below:
[ 95.890016] ==================================================================
[ 95.890496] BUG: KASAN: slab-use-after-free in sco_sock_timeout+0x5e/0x1c0
[ 95.890755] Write of size 4 at addr ffff88800c388080 by task kworker/0:0/7
...
[ 95.890755] Workqueue: events sco_sock_timeout
[ 95.890755] Call Trace:
[ 95.890755] <TASK>
[ 95.890755] dump_stack_lvl+0x45/0x110
[ 95.890755] print_address_description+0x78/0x390
[ 95.890755] print_report+0x11b/0x250
[ 95.890755] ? __virt_addr_valid+0xbe/0xf0
[ 95.890755] ? sco_sock_timeout+0x5e/0x1c0
[ 95.890755] kasan_report+0x139/0x170
[ 95.890755] ? update_load_avg+0xe5/0x9f0
[ 95.890755] ? sco_sock_timeout+0x5e/0x1c0
[ 95.890755] kasan_check_range+0x2c3/0x2e0
[ 95.890755] sco_sock_timeout+0x5e/0x1c0
[ 95.890755] process_one_work+0x561/0xc50
[ 95.890755] worker_thread+0xab2/0x13c0
[ 95.890755] ? pr_cont_work+0x490/0x490
[ 95.890755] kthread+0x279/0x300
[ 95.890755] ? pr_cont_work+0x490/0x490
[ 95.890755] ? kthread_blkcg+0xa0/0xa0
[ 95.890755] ret_from_fork+0x34/0x60
[ 95.890755] ? kthread_blkcg+0xa0/0xa0
[ 95.890755] ret_from_fork_asm+0x11/0x20
[ 95.890755] </TASK>
[ 95.890755]
[ 95.890755] Allocated by task 506:
[ 95.890755] kasan_save_track+0x3f/0x70
[ 95.890755] __kasan_kmalloc+0x86/0x90
[ 95.890755] __kmalloc+0x17f/0x360
[ 95.890755] sk_prot_alloc+0xe1/0x1a0
[ 95.890755] sk_alloc+0x31/0x4e0
[ 95.890755] bt_sock_alloc+0x2b/0x2a0
[ 95.890755] sco_sock_create+0xad/0x320
[ 95.890755] bt_sock_create+0x145/0x320
[ 95.890755] __sock_create+0x2e1/0x650
[ 95.890755] __sys_socket+0xd0/0x280
[ 95.890755] __x64_sys_socket+0x75/0x80
[ 95.890755] do_syscall_64+0xc4/0x1b0
[ 95.890755] entry_SYSCALL_64_after_hwframe+0x67/0x6f
[ 95.890755]
[ 95.890755] Freed by task 506:
[ 95.890755] kasan_save_track+0x3f/0x70
[ 95.890755] kasan_save_free_info+0x40/0x50
[ 95.890755] poison_slab_object+0x118/0x180
[ 95.890755] __kasan_slab_free+0x12/0x30
[ 95.890755] kfree+0xb2/0x240
[ 95.890755] __sk_destruct+0x317/0x410
[ 95.890755] sco_sock_release+0x232/0x280
[ 95.890755] sock_close+0xb2/0x210
[ 95.890755] __fput+0x37f/0x770
[ 95.890755] task_work_run+0x1ae/0x210
[ 95.890755] get_signal+0xe17/0xf70
[ 95.890755] arch_do_signal_or_restart+0x3f/0x520
[ 95.890755] syscall_exit_to_user_mode+0x55/0x120
[ 95.890755] do_syscall_64+0xd1/0x1b0
[ 95.890755] entry_SYSCALL_64_after_hwframe+0x67/0x6f
[ 95.890755]
[ 95.890755] The buggy address belongs to the object at ffff88800c388000
[ 95.890755] which belongs to the cache kmalloc-1k of size 1024
[ 95.890755] The buggy address is located 128 bytes inside of
[ 95.890755] freed 1024-byte region [ffff88800c388000, ffff88800c388400)
[ 95.890755]
[ 95.890755] The buggy address belongs to the physical page:
[ 95.890755] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88800c38a800 pfn:0xc388
[ 95.890755] head: order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0
[ 95.890755] ano
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: defer shutdown(SEND_SHUTDOWN) for TCP_SYN_RECV sockets
TCP_SYN_RECV state is really special, it is only used by
cross-syn connections, mostly used by fuzzers.
In the following crash [1], syzbot managed to trigger a divide
by zero in tcp_rcv_space_adjust()
A socket makes the following state transitions,
without ever calling tcp_init_transfer(),
meaning tcp_init_buffer_space() is also not called.
TCP_CLOSE
connect()
TCP_SYN_SENT
TCP_SYN_RECV
shutdown() -> tcp_shutdown(sk, SEND_SHUTDOWN)
TCP_FIN_WAIT1
To fix this issue, change tcp_shutdown() to not
perform a TCP_SYN_RECV -> TCP_FIN_WAIT1 transition,
which makes no sense anyway.
When tcp_rcv_state_process() later changes socket state
from TCP_SYN_RECV to TCP_ESTABLISH, then look at
sk->sk_shutdown to finally enter TCP_FIN_WAIT1 state,
and send a FIN packet from a sane socket state.
This means tcp_send_fin() can now be called from BH
context, and must use GFP_ATOMIC allocations.
[1]
divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 1 PID: 5084 Comm: syz-executor358 Not tainted 6.9.0-rc6-syzkaller-00022-g98369dccd2f8 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:tcp_rcv_space_adjust+0x2df/0x890 net/ipv4/tcp_input.c:767
Code: e3 04 4c 01 eb 48 8b 44 24 38 0f b6 04 10 84 c0 49 89 d5 0f 85 a5 03 00 00 41 8b 8e c8 09 00 00 89 e8 29 c8 48 0f af c3 31 d2 <48> f7 f1 48 8d 1c 43 49 8d 96 76 08 00 00 48 89 d0 48 c1 e8 03 48
RSP: 0018:ffffc900031ef3f0 EFLAGS: 00010246
RAX: 0c677a10441f8f42 RBX: 000000004fb95e7e RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 0000000027d4b11f R08: ffffffff89e535a4 R09: 1ffffffff25e6ab7
R10: dffffc0000000000 R11: ffffffff8135e920 R12: ffff88802a9f8d30
R13: dffffc0000000000 R14: ffff88802a9f8d00 R15: 1ffff1100553f2da
FS: 00005555775c0380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1155bf2304 CR3: 000000002b9f2000 CR4: 0000000000350ef0
Call Trace:
<TASK>
tcp_recvmsg_locked+0x106d/0x25a0 net/ipv4/tcp.c:2513
tcp_recvmsg+0x25d/0x920 net/ipv4/tcp.c:2578
inet6_recvmsg+0x16a/0x730 net/ipv6/af_inet6.c:680
sock_recvmsg_nosec net/socket.c:1046 [inline]
sock_recvmsg+0x109/0x280 net/socket.c:1068
____sys_recvmsg+0x1db/0x470 net/socket.c:2803
___sys_recvmsg net/socket.c:2845 [inline]
do_recvmmsg+0x474/0xae0 net/socket.c:2939
__sys_recvmmsg net/socket.c:3018 [inline]
__do_sys_recvmmsg net/socket.c:3041 [inline]
__se_sys_recvmmsg net/socket.c:3034 [inline]
__x64_sys_recvmmsg+0x199/0x250 net/socket.c:3034
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7faeb6363db9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 c1 17 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffcc1997168 EFLAGS: 00000246 ORIG_RAX: 000000000000012b
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007faeb6363db9
RDX: 0000000000000001 RSI: 0000000020000bc0 RDI: 0000000000000005
RBP: 0000000000000000 R08: 0000000000000000 R09: 000000000000001c
R10: 0000000000000122 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000001 |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: Use refcount_inc_not_zero() in tcp_twsk_unique().
Anderson Nascimento reported a use-after-free splat in tcp_twsk_unique()
with nice analysis.
Since commit ec94c2696f0b ("tcp/dccp: avoid one atomic operation for
timewait hashdance"), inet_twsk_hashdance() sets TIME-WAIT socket's
sk_refcnt after putting it into ehash and releasing the bucket lock.
Thus, there is a small race window where other threads could try to
reuse the port during connect() and call sock_hold() in tcp_twsk_unique()
for the TIME-WAIT socket with zero refcnt.
If that happens, the refcnt taken by tcp_twsk_unique() is overwritten
and sock_put() will cause underflow, triggering a real use-after-free
somewhere else.
To avoid the use-after-free, we need to use refcount_inc_not_zero() in
tcp_twsk_unique() and give up on reusing the port if it returns false.
[0]:
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 0 PID: 1039313 at lib/refcount.c:25 refcount_warn_saturate+0xe5/0x110
CPU: 0 PID: 1039313 Comm: trigger Not tainted 6.8.6-200.fc39.x86_64 #1
Hardware name: VMware, Inc. VMware20,1/440BX Desktop Reference Platform, BIOS VMW201.00V.21805430.B64.2305221830 05/22/2023
RIP: 0010:refcount_warn_saturate+0xe5/0x110
Code: 42 8e ff 0f 0b c3 cc cc cc cc 80 3d aa 13 ea 01 00 0f 85 5e ff ff ff 48 c7 c7 f8 8e b7 82 c6 05 96 13 ea 01 01 e8 7b 42 8e ff <0f> 0b c3 cc cc cc cc 48 c7 c7 50 8f b7 82 c6 05 7a 13 ea 01 01 e8
RSP: 0018:ffffc90006b43b60 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff888009bb3ef0 RCX: 0000000000000027
RDX: ffff88807be218c8 RSI: 0000000000000001 RDI: ffff88807be218c0
RBP: 0000000000069d70 R08: 0000000000000000 R09: ffffc90006b439f0
R10: ffffc90006b439e8 R11: 0000000000000003 R12: ffff8880029ede84
R13: 0000000000004e20 R14: ffffffff84356dc0 R15: ffff888009bb3ef0
FS: 00007f62c10926c0(0000) GS:ffff88807be00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020ccb000 CR3: 000000004628c005 CR4: 0000000000f70ef0
PKRU: 55555554
Call Trace:
<TASK>
? refcount_warn_saturate+0xe5/0x110
? __warn+0x81/0x130
? refcount_warn_saturate+0xe5/0x110
? report_bug+0x171/0x1a0
? refcount_warn_saturate+0xe5/0x110
? handle_bug+0x3c/0x80
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? refcount_warn_saturate+0xe5/0x110
tcp_twsk_unique+0x186/0x190
__inet_check_established+0x176/0x2d0
__inet_hash_connect+0x74/0x7d0
? __pfx___inet_check_established+0x10/0x10
tcp_v4_connect+0x278/0x530
__inet_stream_connect+0x10f/0x3d0
inet_stream_connect+0x3a/0x60
__sys_connect+0xa8/0xd0
__x64_sys_connect+0x18/0x20
do_syscall_64+0x83/0x170
entry_SYSCALL_64_after_hwframe+0x78/0x80
RIP: 0033:0x7f62c11a885d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d a3 45 0c 00 f7 d8 64 89 01 48
RSP: 002b:00007f62c1091e58 EFLAGS: 00000296 ORIG_RAX: 000000000000002a
RAX: ffffffffffffffda RBX: 0000000020ccb004 RCX: 00007f62c11a885d
RDX: 0000000000000010 RSI: 0000000020ccb000 RDI: 0000000000000003
RBP: 00007f62c1091e90 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000296 R12: 00007f62c10926c0
R13: ffffffffffffff88 R14: 0000000000000000 R15: 00007ffe237885b0
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: fix UAF in error path
Sam Page (sam4k) working with Trend Micro Zero Day Initiative reported
a UAF in the tipc_buf_append() error path:
BUG: KASAN: slab-use-after-free in kfree_skb_list_reason+0x47e/0x4c0
linux/net/core/skbuff.c:1183
Read of size 8 at addr ffff88804d2a7c80 by task poc/8034
CPU: 1 PID: 8034 Comm: poc Not tainted 6.8.2 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.0-debian-1.16.0-5 04/01/2014
Call Trace:
<IRQ>
__dump_stack linux/lib/dump_stack.c:88
dump_stack_lvl+0xd9/0x1b0 linux/lib/dump_stack.c:106
print_address_description linux/mm/kasan/report.c:377
print_report+0xc4/0x620 linux/mm/kasan/report.c:488
kasan_report+0xda/0x110 linux/mm/kasan/report.c:601
kfree_skb_list_reason+0x47e/0x4c0 linux/net/core/skbuff.c:1183
skb_release_data+0x5af/0x880 linux/net/core/skbuff.c:1026
skb_release_all linux/net/core/skbuff.c:1094
__kfree_skb linux/net/core/skbuff.c:1108
kfree_skb_reason+0x12d/0x210 linux/net/core/skbuff.c:1144
kfree_skb linux/./include/linux/skbuff.h:1244
tipc_buf_append+0x425/0xb50 linux/net/tipc/msg.c:186
tipc_link_input+0x224/0x7c0 linux/net/tipc/link.c:1324
tipc_link_rcv+0x76e/0x2d70 linux/net/tipc/link.c:1824
tipc_rcv+0x45f/0x10f0 linux/net/tipc/node.c:2159
tipc_udp_recv+0x73b/0x8f0 linux/net/tipc/udp_media.c:390
udp_queue_rcv_one_skb+0xad2/0x1850 linux/net/ipv4/udp.c:2108
udp_queue_rcv_skb+0x131/0xb00 linux/net/ipv4/udp.c:2186
udp_unicast_rcv_skb+0x165/0x3b0 linux/net/ipv4/udp.c:2346
__udp4_lib_rcv+0x2594/0x3400 linux/net/ipv4/udp.c:2422
ip_protocol_deliver_rcu+0x30c/0x4e0 linux/net/ipv4/ip_input.c:205
ip_local_deliver_finish+0x2e4/0x520 linux/net/ipv4/ip_input.c:233
NF_HOOK linux/./include/linux/netfilter.h:314
NF_HOOK linux/./include/linux/netfilter.h:308
ip_local_deliver+0x18e/0x1f0 linux/net/ipv4/ip_input.c:254
dst_input linux/./include/net/dst.h:461
ip_rcv_finish linux/net/ipv4/ip_input.c:449
NF_HOOK linux/./include/linux/netfilter.h:314
NF_HOOK linux/./include/linux/netfilter.h:308
ip_rcv+0x2c5/0x5d0 linux/net/ipv4/ip_input.c:569
__netif_receive_skb_one_core+0x199/0x1e0 linux/net/core/dev.c:5534
__netif_receive_skb+0x1f/0x1c0 linux/net/core/dev.c:5648
process_backlog+0x101/0x6b0 linux/net/core/dev.c:5976
__napi_poll.constprop.0+0xba/0x550 linux/net/core/dev.c:6576
napi_poll linux/net/core/dev.c:6645
net_rx_action+0x95a/0xe90 linux/net/core/dev.c:6781
__do_softirq+0x21f/0x8e7 linux/kernel/softirq.c:553
do_softirq linux/kernel/softirq.c:454
do_softirq+0xb2/0xf0 linux/kernel/softirq.c:441
</IRQ>
<TASK>
__local_bh_enable_ip+0x100/0x120 linux/kernel/softirq.c:381
local_bh_enable linux/./include/linux/bottom_half.h:33
rcu_read_unlock_bh linux/./include/linux/rcupdate.h:851
__dev_queue_xmit+0x871/0x3ee0 linux/net/core/dev.c:4378
dev_queue_xmit linux/./include/linux/netdevice.h:3169
neigh_hh_output linux/./include/net/neighbour.h:526
neigh_output linux/./include/net/neighbour.h:540
ip_finish_output2+0x169f/0x2550 linux/net/ipv4/ip_output.c:235
__ip_finish_output linux/net/ipv4/ip_output.c:313
__ip_finish_output+0x49e/0x950 linux/net/ipv4/ip_output.c:295
ip_finish_output+0x31/0x310 linux/net/ipv4/ip_output.c:323
NF_HOOK_COND linux/./include/linux/netfilter.h:303
ip_output+0x13b/0x2a0 linux/net/ipv4/ip_output.c:433
dst_output linux/./include/net/dst.h:451
ip_local_out linux/net/ipv4/ip_output.c:129
ip_send_skb+0x3e5/0x560 linux/net/ipv4/ip_output.c:1492
udp_send_skb+0x73f/0x1530 linux/net/ipv4/udp.c:963
udp_sendmsg+0x1a36/0x2b40 linux/net/ipv4/udp.c:1250
inet_sendmsg+0x105/0x140 linux/net/ipv4/af_inet.c:850
sock_sendmsg_nosec linux/net/socket.c:730
__sock_sendmsg linux/net/socket.c:745
__sys_sendto+0x42c/0x4e0 linux/net/socket.c:2191
__do_sys_sendto linux/net/socket.c:2203
__se_sys_sendto linux/net/socket.c:2199
__x64_sys_sendto+0xe0/0x1c0 linux/net/socket.c:2199
do_syscall_x64 linux/arch/x86/entry/common.c:52
do_syscall_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix out-of-bounds access in ops_init
net_alloc_generic is called by net_alloc, which is called without any
locking. It reads max_gen_ptrs, which is changed under pernet_ops_rwsem. It
is read twice, first to allocate an array, then to set s.len, which is
later used to limit the bounds of the array access.
It is possible that the array is allocated and another thread is
registering a new pernet ops, increments max_gen_ptrs, which is then used
to set s.len with a larger than allocated length for the variable array.
Fix it by reading max_gen_ptrs only once in net_alloc_generic. If
max_gen_ptrs is later incremented, it will be caught in net_assign_generic. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: sunxi-ng: h6: Reparent CPUX during PLL CPUX rate change
While PLL CPUX clock rate change when CPU is running from it works in
vast majority of cases, now and then it causes instability. This leads
to system crashes and other undefined behaviour. After a lot of testing
(30+ hours) while also doing a lot of frequency switches, we can't
observe any instability issues anymore when doing reparenting to stable
clock like 24 MHz oscillator. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: process: Fix kernel gp leakage
childregs represents the registers which are active for the new thread
in user context. For a kernel thread, childregs->gp is never used since
the kernel gp is not touched by switch_to. For a user mode helper, the
gp value can be observed in user space after execve or possibly by other
means.
[From the email thread]
The /* Kernel thread */ comment is somewhat inaccurate in that it is also used
for user_mode_helper threads, which exec a user process, e.g. /sbin/init or
when /proc/sys/kernel/core_pattern is a pipe. Such threads do not have
PF_KTHREAD set and are valid targets for ptrace etc. even before they exec.
childregs is the *user* context during syscall execution and it is observable
from userspace in at least five ways:
1. kernel_execve does not currently clear integer registers, so the starting
register state for PID 1 and other user processes started by the kernel has
sp = user stack, gp = kernel __global_pointer$, all other integer registers
zeroed by the memset in the patch comment.
This is a bug in its own right, but I'm unwilling to bet that it is the only
way to exploit the issue addressed by this patch.
2. ptrace(PTRACE_GETREGSET): you can PTRACE_ATTACH to a user_mode_helper thread
before it execs, but ptrace requires SIGSTOP to be delivered which can only
happen at user/kernel boundaries.
3. /proc/*/task/*/syscall: this is perfectly happy to read pt_regs for
user_mode_helpers before the exec completes, but gp is not one of the
registers it returns.
4. PERF_SAMPLE_REGS_USER: LOCKDOWN_PERF normally prevents access to kernel
addresses via PERF_SAMPLE_REGS_INTR, but due to this bug kernel addresses
are also exposed via PERF_SAMPLE_REGS_USER which is permitted under
LOCKDOWN_PERF. I have not attempted to write exploit code.
5. Much of the tracing infrastructure allows access to user registers. I have
not attempted to determine which forms of tracing allow access to user
registers without already allowing access to kernel registers. |
| In the Linux kernel, the following vulnerability has been resolved:
phonet: fix rtm_phonet_notify() skb allocation
fill_route() stores three components in the skb:
- struct rtmsg
- RTA_DST (u8)
- RTA_OIF (u32)
Therefore, rtm_phonet_notify() should use
NLMSG_ALIGN(sizeof(struct rtmsg)) +
nla_total_size(1) +
nla_total_size(4) |
| In the Linux kernel, the following vulnerability has been resolved:
bna: ensure the copied buf is NUL terminated
Currently, we allocate a nbytes-sized kernel buffer and copy nbytes from
userspace to that buffer. Later, we use sscanf on this buffer but we don't
ensure that the string is terminated inside the buffer, this can lead to
OOB read when using sscanf. Fix this issue by using memdup_user_nul
instead of memdup_user. |
| In the Linux kernel, the following vulnerability has been resolved:
nsh: Restore skb->{protocol,data,mac_header} for outer header in nsh_gso_segment().
syzbot triggered various splats (see [0] and links) by a crafted GSO
packet of VIRTIO_NET_HDR_GSO_UDP layering the following protocols:
ETH_P_8021AD + ETH_P_NSH + ETH_P_IPV6 + IPPROTO_UDP
NSH can encapsulate IPv4, IPv6, Ethernet, NSH, and MPLS. As the inner
protocol can be Ethernet, NSH GSO handler, nsh_gso_segment(), calls
skb_mac_gso_segment() to invoke inner protocol GSO handlers.
nsh_gso_segment() does the following for the original skb before
calling skb_mac_gso_segment()
1. reset skb->network_header
2. save the original skb->{mac_heaeder,mac_len} in a local variable
3. pull the NSH header
4. resets skb->mac_header
5. set up skb->mac_len and skb->protocol for the inner protocol.
and does the following for the segmented skb
6. set ntohs(ETH_P_NSH) to skb->protocol
7. push the NSH header
8. restore skb->mac_header
9. set skb->mac_header + mac_len to skb->network_header
10. restore skb->mac_len
There are two problems in 6-7 and 8-9.
(a)
After 6 & 7, skb->data points to the NSH header, so the outer header
(ETH_P_8021AD in this case) is stripped when skb is sent out of netdev.
Also, if NSH is encapsulated by NSH + Ethernet (so NSH-Ethernet-NSH),
skb_pull() in the first nsh_gso_segment() will make skb->data point
to the middle of the outer NSH or Ethernet header because the Ethernet
header is not pulled by the second nsh_gso_segment().
(b)
While restoring skb->{mac_header,network_header} in 8 & 9,
nsh_gso_segment() does not assume that the data in the linear
buffer is shifted.
However, udp6_ufo_fragment() could shift the data and change
skb->mac_header accordingly as demonstrated by syzbot.
If this happens, even the restored skb->mac_header points to
the middle of the outer header.
It seems nsh_gso_segment() has never worked with outer headers so far.
At the end of nsh_gso_segment(), the outer header must be restored for
the segmented skb, instead of the NSH header.
To do that, let's calculate the outer header position relatively from
the inner header and set skb->{data,mac_header,protocol} properly.
[0]:
BUG: KMSAN: uninit-value in ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:524 [inline]
BUG: KMSAN: uninit-value in ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:602 [inline]
BUG: KMSAN: uninit-value in ipvlan_queue_xmit+0xf44/0x16b0 drivers/net/ipvlan/ipvlan_core.c:668
ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:524 [inline]
ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:602 [inline]
ipvlan_queue_xmit+0xf44/0x16b0 drivers/net/ipvlan/ipvlan_core.c:668
ipvlan_start_xmit+0x5c/0x1a0 drivers/net/ipvlan/ipvlan_main.c:222
__netdev_start_xmit include/linux/netdevice.h:4989 [inline]
netdev_start_xmit include/linux/netdevice.h:5003 [inline]
xmit_one net/core/dev.c:3547 [inline]
dev_hard_start_xmit+0x244/0xa10 net/core/dev.c:3563
__dev_queue_xmit+0x33ed/0x51c0 net/core/dev.c:4351
dev_queue_xmit include/linux/netdevice.h:3171 [inline]
packet_xmit+0x9c/0x6b0 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3081 [inline]
packet_sendmsg+0x8aef/0x9f10 net/packet/af_packet.c:3113
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
__sys_sendto+0x735/0xa10 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1c0 net/socket.c:2199
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3819 [inline]
slab_alloc_node mm/slub.c:3860 [inline]
__do_kmalloc_node mm/slub.c:3980 [inline]
__kmalloc_node_track_caller+0x705/0x1000 mm/slub.c:4001
kmalloc_reserve+0x249/0x4a0 net/core/skbuff.c:582
__
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: core: reject skb_copy(_expand) for fraglist GSO skbs
SKB_GSO_FRAGLIST skbs must not be linearized, otherwise they become
invalid. Return NULL if such an skb is passed to skb_copy or
skb_copy_expand, in order to prevent a crash on a potential later
call to skb_gso_segment. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: bnx2fc: Remove spin_lock_bh while releasing resources after upload
The session resources are used by FW and driver when session is offloaded,
once session is uploaded these resources are not used. The lock is not
required as these fields won't be used any longer. The offload and upload
calls are sequential, hence lock is not required.
This will suppress following BUG_ON():
[ 449.843143] ------------[ cut here ]------------
[ 449.848302] kernel BUG at mm/vmalloc.c:2727!
[ 449.853072] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[ 449.858712] CPU: 5 PID: 1996 Comm: kworker/u24:2 Not tainted 5.14.0-118.el9.x86_64 #1
Rebooting.
[ 449.867454] Hardware name: Dell Inc. PowerEdge R730/0WCJNT, BIOS 2.3.4 11/08/2016
[ 449.876966] Workqueue: fc_rport_eq fc_rport_work [libfc]
[ 449.882910] RIP: 0010:vunmap+0x2e/0x30
[ 449.887098] Code: 00 65 8b 05 14 a2 f0 4a a9 00 ff ff 00 75 1b 55 48 89 fd e8 34 36 79 00 48 85 ed 74 0b 48 89 ef 31 f6 5d e9 14 fc ff ff 5d c3 <0f> 0b 0f 1f 44 00 00 41 57 41 56 49 89 ce 41 55 49 89 fd 41 54 41
[ 449.908054] RSP: 0018:ffffb83d878b3d68 EFLAGS: 00010206
[ 449.913887] RAX: 0000000080000201 RBX: ffff8f4355133550 RCX: 000000000d400005
[ 449.921843] RDX: 0000000000000001 RSI: 0000000000001000 RDI: ffffb83da53f5000
[ 449.929808] RBP: ffff8f4ac6675800 R08: ffffb83d878b3d30 R09: 00000000000efbdf
[ 449.937774] R10: 0000000000000003 R11: ffff8f434573e000 R12: 0000000000001000
[ 449.945736] R13: 0000000000001000 R14: ffffb83da53f5000 R15: ffff8f43d4ea3ae0
[ 449.953701] FS: 0000000000000000(0000) GS:ffff8f529fc80000(0000) knlGS:0000000000000000
[ 449.962732] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 449.969138] CR2: 00007f8cf993e150 CR3: 0000000efbe10003 CR4: 00000000003706e0
[ 449.977102] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 449.985065] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 449.993028] Call Trace:
[ 449.995756] __iommu_dma_free+0x96/0x100
[ 450.000139] bnx2fc_free_session_resc+0x67/0x240 [bnx2fc]
[ 450.006171] bnx2fc_upload_session+0xce/0x100 [bnx2fc]
[ 450.011910] bnx2fc_rport_event_handler+0x9f/0x240 [bnx2fc]
[ 450.018136] fc_rport_work+0x103/0x5b0 [libfc]
[ 450.023103] process_one_work+0x1e8/0x3c0
[ 450.027581] worker_thread+0x50/0x3b0
[ 450.031669] ? rescuer_thread+0x370/0x370
[ 450.036143] kthread+0x149/0x170
[ 450.039744] ? set_kthread_struct+0x40/0x40
[ 450.044411] ret_from_fork+0x22/0x30
[ 450.048404] Modules linked in: vfat msdos fat xfs nfs_layout_nfsv41_files rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver dm_service_time qedf qed crc8 bnx2fc libfcoe libfc scsi_transport_fc intel_rapl_msr intel_rapl_common x86_pkg_temp_thermal intel_powerclamp dcdbas rapl intel_cstate intel_uncore mei_me pcspkr mei ipmi_ssif lpc_ich ipmi_si fuse zram ext4 mbcache jbd2 loop nfsv3 nfs_acl nfs lockd grace fscache netfs irdma ice sd_mod t10_pi sg ib_uverbs ib_core 8021q garp mrp stp llc mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect sysimgblt mxm_wmi fb_sys_fops cec crct10dif_pclmul ahci crc32_pclmul bnx2x drm ghash_clmulni_intel libahci rfkill i40e libata megaraid_sas mdio wmi sunrpc lrw dm_crypt dm_round_robin dm_multipath dm_snapshot dm_bufio dm_mirror dm_region_hash dm_log dm_zero dm_mod linear raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx raid6_pq libcrc32c crc32c_intel raid1 raid0 iscsi_ibft squashfs be2iscsi bnx2i cnic uio cxgb4i cxgb4 tls
[ 450.048497] libcxgbi libcxgb qla4xxx iscsi_boot_sysfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi edd ipmi_devintf ipmi_msghandler
[ 450.159753] ---[ end trace 712de2c57c64abc8 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
blk-iocost: avoid out of bounds shift
UBSAN catches undefined behavior in blk-iocost, where sometimes
iocg->delay is shifted right by a number that is too large,
resulting in undefined behavior on some architectures.
[ 186.556576] ------------[ cut here ]------------
UBSAN: shift-out-of-bounds in block/blk-iocost.c:1366:23
shift exponent 64 is too large for 64-bit type 'u64' (aka 'unsigned long long')
CPU: 16 PID: 0 Comm: swapper/16 Tainted: G S E N 6.9.0-0_fbk700_debug_rc2_kbuilder_0_gc85af715cac0 #1
Hardware name: Quanta Twin Lakes MP/Twin Lakes Passive MP, BIOS F09_3A23 12/08/2020
Call Trace:
<IRQ>
dump_stack_lvl+0x8f/0xe0
__ubsan_handle_shift_out_of_bounds+0x22c/0x280
iocg_kick_delay+0x30b/0x310
ioc_timer_fn+0x2fb/0x1f80
__run_timer_base+0x1b6/0x250
...
Avoid that undefined behavior by simply taking the
"delay = 0" branch if the shift is too large.
I am not sure what the symptoms of an undefined value
delay will be, but I suspect it could be more than a
little annoying to debug. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: dib7090p: fix null-ptr-deref in dib7090p_rw_on_apb()
In dib7090p_rw_on_apb, msg is controlled by user. When msg[0].buf is null and
msg[0].len is zero, former checks on msg[0].buf would be passed. If accessing
msg[0].buf[2] without sanity check, null pointer deref would happen. We add
check on msg[0].len to prevent crash. Similar issue occurs when access
msg[1].buf[0] and msg[1].buf[1].
Similar commit: commit 0ed554fd769a ("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()") |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/entry: Mask DAIF in cpu_switch_to(), call_on_irq_stack()
`cpu_switch_to()` and `call_on_irq_stack()` manipulate SP to change
to different stacks along with the Shadow Call Stack if it is enabled.
Those two stack changes cannot be done atomically and both functions
can be interrupted by SErrors or Debug Exceptions which, though unlikely,
is very much broken : if interrupted, we can end up with mismatched stacks
and Shadow Call Stack leading to clobbered stacks.
In `cpu_switch_to()`, it can happen when SP_EL0 points to the new task,
but x18 stills points to the old task's SCS. When the interrupt handler
tries to save the task's SCS pointer, it will save the old task
SCS pointer (x18) into the new task struct (pointed to by SP_EL0),
clobbering it.
In `call_on_irq_stack()`, it can happen when switching from the task stack
to the IRQ stack and when switching back. In both cases, we can be
interrupted when the SCS pointer points to the IRQ SCS, but SP points to
the task stack. The nested interrupt handler pushes its return addresses
on the IRQ SCS. It then detects that SP points to the task stack,
calls `call_on_irq_stack()` and clobbers the task SCS pointer with
the IRQ SCS pointer, which it will also use !
This leads to tasks returning to addresses on the wrong SCS,
or even on the IRQ SCS, triggering kernel panics via CONFIG_VMAP_STACK
or FPAC if enabled.
This is possible on a default config, but unlikely.
However, when enabling CONFIG_ARM64_PSEUDO_NMI, DAIF is unmasked and
instead the GIC is responsible for filtering what interrupts the CPU
should receive based on priority.
Given the goal of emulating NMIs, pseudo-NMIs can be received by the CPU
even in `cpu_switch_to()` and `call_on_irq_stack()`, possibly *very*
frequently depending on the system configuration and workload, leading
to unpredictable kernel panics.
Completely mask DAIF in `cpu_switch_to()` and restore it when returning.
Do the same in `call_on_irq_stack()`, but restore and mask around
the branch.
Mask DAIF even if CONFIG_SHADOW_CALL_STACK is not enabled for consistency
of behaviour between all configurations.
Introduce and use an assembly macro for saving and masking DAIF,
as the existing one saves but only masks IF. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/sev: Evict cache lines during SNP memory validation
An SNP cache coherency vulnerability requires a cache line eviction
mitigation when validating memory after a page state change to private.
The specific mitigation is to touch the first and last byte of each 4K
page that is being validated. There is no need to perform the mitigation
when performing a page state change to shared and rescinding validation.
CPUID bit Fn8000001F_EBX[31] defines the COHERENCY_SFW_NO CPUID bit
that, when set, indicates that the software mitigation for this
vulnerability is not needed.
Implement the mitigation and invoke it when validating memory (making it
private) and the COHERENCY_SFW_NO bit is not set, indicating the SNP
guest is vulnerable. |