| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability was found in Keycloak-services. Special characters used during e-mail registration may perform SMTP Injection and unexpectedly send short unwanted e-mails. The email is limited to 64 characters (limited local part of the email), so the attack is limited to very shorts emails (subject and little data, the example is 60 chars). This flaw's only direct consequence is an unsolicited email being sent from the Keycloak server. However, this action could be a precursor for more sophisticated attacks. |
| A flaw was found in Keycloak. When an authenticated attacker attempts to merge accounts with another existing account during an identity provider (IdP) login, the attacker will subsequently be prompted to "review profile" information. This vulnerability allows the attacker to modify their email address to match that of a victim's account, triggering a verification email sent to the victim's email address. The attacker's email address is not present in the verification email content, making it a potential phishing opportunity. If the victim clicks the verification link, the attacker can gain access to the victim's account. |
| A flaw was found in Keycloak. In Keycloak where a user can accidentally get access to another user's session if both use the same device and browser. This happens because Keycloak sometimes reuses session identifiers and doesn’t clean up properly during logout when browser cookies are missing. As a result, one user may receive tokens that belong to another user. |
| A flaw was found in the SAML client registration in Keycloak that could allow an administrator to register malicious JavaScript URIs as Assertion Consumer Service POST Binding URLs (ACS), posing a Cross-Site Scripting (XSS) risk. This issue may allow a malicious admin in one realm or a client with registration access to target users in different realms or applications, executing arbitrary JavaScript in their contexts upon form submission. This can enable unauthorized access and harmful actions, compromising the confidentiality, integrity, and availability of the complete KC instance. |
| A flaw was found in Keycloak. This vulnerability allows an unauthenticated remote attacker to cause a denial of service (DoS) by repeatedly initiating TLS 1.2 client-initiated renegotiation requests to exhaust server CPU resources, making the service unavailable. |
| A flaw was found in the Keycloak LDAP User Federation provider. This vulnerability allows an authenticated realm administrator to trigger deserialization of untrusted Java objects via a malicious LDAP server configuration. |
| A vulnerability was found in the Keycloak Server. The Keycloak Server is vulnerable to a denial of service (DoS) attack due to improper handling of proxy headers. When Keycloak is configured to accept incoming proxy headers, it may accept non-IP values, such as obfuscated identifiers, without proper validation. This issue can lead to costly DNS resolution operations, which an attacker could exploit to tie up IO threads and potentially cause a denial of service.
The attacker must have access to send requests to a Keycloak instance that is configured to accept proxy headers, specifically when reverse proxies do not overwrite incoming headers, and Keycloak is configured to trust these headers. |
| A flaw was found in Keycloak. Keycloak’s account console and other pages accept arbitrary text in the error_description query parameter. This text is directly rendered in error pages without validation or sanitization. While HTML encoding prevents XSS, an attacker can craft URLs with misleading messages (e.g., fake support phone numbers or URLs), which are displayed within the trusted Keycloak UI. This creates a phishing vector, potentially tricking users into contacting malicious actors. |
| A flaw was found in Keycloak. The Keycloak guides recommend to not expose /admin path to the outside in case the installation is using a proxy. The issue occurs at least via ha-proxy, as it can be tricked to using relative/non-normalized paths to access the /admin application path relative to /realms which is expected to be exposed. |
| A flaw was found in org.keycloak/keycloak-model-storage-service. The KeycloakRealmImport custom resource substitutes placeholders within imported realm documents, potentially referencing environment variables. This substitution process
allows for injection attacks when crafted realm documents are processed. An attacker can leverage this to inject malicious content during the realm import procedure. This can lead to unintended consequences within the Keycloak environment. |
| A vulnerability exists in Keycloak's server distribution where enabling debug mode (--debug <port>) insecurely defaults to binding the Java Debug Wire Protocol (JDWP) port to all network interfaces (0.0.0.0). This exposes the debug port to the local network, allowing an attacker on the same network segment to attach a remote debugger and achieve remote code execution within the Keycloak Java virtual machine. |
| A vulnerability was found in Wildfly’s management interface. Due to the lack of limitation of sockets for the management interface, it may be possible to cause a denial of service hitting the nofile limit as there is no possibility to configure or set a maximum number of connections. |
| A flaw was found in Keycloak. An IDOR (Broken Access Control) vulnerability exists in the admin API endpoints for authorization resource management, specifically in ResourceSetService and PermissionTicketService. The system checks authorization against the resourceServer (client) ID provided in the API request, but the backend database lookup and modification operations (findById, delete) only use the resourceId. This mismatch allows an authenticated attacker with fine-grained admin permissions for one client (e.g., Client A) to delete or update resources belonging to another client (Client B) within the same realm by supplying a valid resource ID. |
| A vulnerability has been identified in Keycloak that could lead to unauthorized information disclosure. While it requires an already authenticated user, the /admin/serverinfo endpoint can inadvertently provide sensitive environment information. |
| A flaw was found in Keycloak in OAuth 2.0 Pushed Authorization Requests (PAR). Client-provided parameters were found to be included in plain text in the KC_RESTART cookie returned by the authorization server's HTTP response to a `request_uri` authorization request, possibly leading to an information disclosure vulnerability. |
| A vulnerability was found in Keycloak. The LDAP testing endpoint allows changing the Connection URL independently without re-entering the currently configured LDAP bind credentials. This flaw allows an attacker with admin access (permission manage-realm) to change the LDAP host URL ("Connection URL") to a machine they control. The Keycloak server will connect to the attacker's host and try to authenticate with the configured credentials, thus leaking them to the attacker. As a consequence, an attacker who has compromised the admin console or compromised a user with sufficient privileges can leak domain credentials and attack the domain. |
| A vulnerability was found in Keycloak. This flaw allows attackers to bypass brute force protection by exploiting the timing of login attempts. By initiating multiple login requests simultaneously, attackers can exceed the configured limits for failed attempts before the system locks them out. This timing loophole enables attackers to make more guesses at passwords than intended, potentially compromising account security on affected systems. |
| A vulnerability was found in Keycloak. This issue may allow a privileged attacker to use a malicious payload as the permission while creating items (Resource and Permissions) from the admin console, leading to a stored cross-site scripting (XSS) attack. |
| A flaw was found in Keycloak. In certain conditions, this issue may allow a remote unauthenticated attacker to block other accounts from logging in. |
| A log injection flaw was found in Keycloak. A text string may be injected through the authentication form when using the WebAuthn authentication mode. This issue may have a minor impact to the logs integrity. |