Search Results (19969 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-22858 1 Freerdp 1 Freerdp 2026-01-20 9.1 Critical
FreeRDP is a free implementation of the Remote Desktop Protocol. Prior to 3.20.1, global-buffer-overflow was observed in FreeRDP's Base64 decoding path. The root cause appears to be implementation-defined char signedness: on Arm/AArch64 builds, plain char is treated as unsigned, so the guard c <= 0 can be optimized into a simple c != 0 check. As a result, non-ASCII bytes (e.g., 0x80-0xFF) may bypass the intended range restriction and be used as an index into a global lookup table, causing out-of-bounds access. This vulnerability is fixed in 3.20.1.
CVE-2026-22859 1 Freerdp 1 Freerdp 2026-01-20 9.1 Critical
FreeRDP is a free implementation of the Remote Desktop Protocol. Prior to 3.20.1, the URBDRC client does not perform bounds checking on server‑supplied MSUSB_INTERFACE_DESCRIPTOR values and uses them as indices in libusb_udev_complete_msconfig_setup, causing an out‑of‑bounds read. This vulnerability is fixed in 3.20.1.
CVE-2025-13151 1 Gnu 1 Libtasn1 2026-01-20 7.5 High
Stack-based buffer overflow in libtasn1 version: v4.20.0. The function fails to validate the size of input data resulting in a buffer overflow in asn1_expend_octet_string.
CVE-2025-57812 1 Openprinting 2 Cups-filters, Libcupsfilters 2026-01-20 3.7 Low
CUPS is a standards-based, open-source printing system, and `libcupsfilters` contains the code of the filters of the former `cups-filters` package as library functions to be used for the data format conversion tasks needed in Printer Applications. In CUPS-Filters versions up to and including 1.28.17 and libscupsfilters versions 2.0.0 through 2.1.1, CUPS-Filters's `imagetoraster` filter has an out of bounds read/write vulnerability in the processing of TIFF image files. While the pixel buffer is allocated with the number of pixels times a pre-calculated bytes-per-pixel value, the function which processes these pixels is called with a size of the number of pixels times 3. When suitable inputs are passed, the bytes-per-pixel value can be set to 1 and bytes outside of the buffer bounds get processed. In order to trigger the bug, an attacker must issue a print job with a crafted TIFF file, and pass appropriate print job options to control the bytes-per-pixel value of the output format. They must choose a printer configuration under which the `imagetoraster` filter or its C-function equivalent `cfFilterImageToRaster()` gets invoked. The vulnerability exists in both CUPS-Filters 1.x and the successor library libcupsfilters (CUPS-Filters 2.x). In CUPS-Filters 2.x, the vulnerable function is `_cfImageReadTIFF() in libcupsfilters`. When this function is invoked as part of `cfFilterImageToRaster()`, the caller passes a look-up-table during whose processing the out of bounds memory access happens. In CUPS-Filters 1.x, the equivalent functions are all found in the cups-filters repository, which is not split into subprojects yet, and the vulnerable code is in `_cupsImageReadTIFF()`, which is called through `cupsImageOpen()` from the `imagetoraster` tool. A patch is available in commit b69dfacec7f176281782e2f7ac44f04bf9633cfa.
CVE-2025-71023 1 Tenda 2 Ax3, Ax3 Firmware 2026-01-20 7.5 High
Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the mac2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2025-70747 1 Tenda 2 Ax1806, Ax1806 Firmware 2026-01-20 7.5 High
Tenda AX-1806 v1.0.0.1 was discovered to contain a stack overflow in the serviceName parameter of the sub_65A28 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2025-71021 1 Tenda 2 Ax1806, Ax1806 Firmware 2026-01-20 7.5 High
Tenda AX-1806 v1.0.0.1 was discovered to contain a stack overflow in the serverName parameter of the sub_65A28 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2025-70744 1 Tenda 2 Ax1806, Ax1806 Firmware 2026-01-20 7.5 High
Tenda AX-1806 v1.0.0.1 was discovered to contain a stack overflow in the cloneType parameter of the sub_65B5C function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2025-14425 1 Gimp 1 Gimp 2026-01-20 7.8 High
GIMP JP2 File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of JP2 files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-28248.
CVE-2025-71019 1 Tenda 2 Ax1806, Ax1806 Firmware 2026-01-20 7.5 High
Tenda AX-1806 v1.0.0.1 was discovered to contain a stack overflow in the wanSpeed parameter of the sub_65B5C function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2025-70656 1 Tenda 2 Ax1806, Ax1806 Firmware 2026-01-20 7.5 High
Tenda AX-1806 v1.0.0.1 was discovered to contain a stack overflow in the mac parameter of the sub_65B5C function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2025-14423 1 Gimp 1 Gimp 2026-01-20 7.8 High
GIMP LBM File Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of LBM files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-28311.
CVE-2023-53486 1 Linux 1 Linux Kernel 2026-01-20 7.1 High
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Enhance the attribute size check This combines the overflow and boundary check so that all attribute size will be properly examined while enumerating them. [ 169.181521] BUG: KASAN: slab-out-of-bounds in run_unpack+0x2e3/0x570 [ 169.183161] Read of size 1 at addr ffff8880094b6240 by task mount/247 [ 169.184046] [ 169.184925] CPU: 0 PID: 247 Comm: mount Not tainted 6.0.0-rc7+ #3 [ 169.185908] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 169.187066] Call Trace: [ 169.187492] <TASK> [ 169.188049] dump_stack_lvl+0x49/0x63 [ 169.188495] print_report.cold+0xf5/0x689 [ 169.188964] ? run_unpack+0x2e3/0x570 [ 169.189331] kasan_report+0xa7/0x130 [ 169.189714] ? run_unpack+0x2e3/0x570 [ 169.190079] __asan_load1+0x51/0x60 [ 169.190634] run_unpack+0x2e3/0x570 [ 169.191290] ? run_pack+0x840/0x840 [ 169.191569] ? run_lookup_entry+0xb3/0x1f0 [ 169.192443] ? mi_enum_attr+0x20a/0x230 [ 169.192886] run_unpack_ex+0xad/0x3e0 [ 169.193276] ? run_unpack+0x570/0x570 [ 169.193557] ? ni_load_mi+0x80/0x80 [ 169.193889] ? debug_smp_processor_id+0x17/0x20 [ 169.194236] ? mi_init+0x4a/0x70 [ 169.194496] attr_load_runs_vcn+0x166/0x1c0 [ 169.194851] ? attr_data_write_resident+0x250/0x250 [ 169.195188] mi_read+0x133/0x2c0 [ 169.195481] ntfs_iget5+0x277/0x1780 [ 169.196017] ? call_rcu+0x1c7/0x330 [ 169.196392] ? ntfs_get_block_bmap+0x70/0x70 [ 169.196708] ? evict+0x223/0x280 [ 169.197014] ? __kmalloc+0x33/0x540 [ 169.197305] ? wnd_init+0x15b/0x1b0 [ 169.197599] ntfs_fill_super+0x1026/0x1ba0 [ 169.197994] ? put_ntfs+0x1d0/0x1d0 [ 169.198299] ? vsprintf+0x20/0x20 [ 169.198583] ? mutex_unlock+0x81/0xd0 [ 169.198930] ? set_blocksize+0x95/0x150 [ 169.199269] get_tree_bdev+0x232/0x370 [ 169.199750] ? put_ntfs+0x1d0/0x1d0 [ 169.200094] ntfs_fs_get_tree+0x15/0x20 [ 169.200431] vfs_get_tree+0x4c/0x130 [ 169.200714] path_mount+0x654/0xfe0 [ 169.201067] ? putname+0x80/0xa0 [ 169.201358] ? finish_automount+0x2e0/0x2e0 [ 169.201965] ? putname+0x80/0xa0 [ 169.202445] ? kmem_cache_free+0x1c4/0x440 [ 169.203075] ? putname+0x80/0xa0 [ 169.203414] do_mount+0xd6/0xf0 [ 169.203719] ? path_mount+0xfe0/0xfe0 [ 169.203977] ? __kasan_check_write+0x14/0x20 [ 169.204382] __x64_sys_mount+0xca/0x110 [ 169.204711] do_syscall_64+0x3b/0x90 [ 169.205059] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 169.205571] RIP: 0033:0x7f67a80e948a [ 169.206327] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008 [ 169.208296] RSP: 002b:00007ffddf020f58 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5 [ 169.209253] RAX: ffffffffffffffda RBX: 000055e2547a6060 RCX: 00007f67a80e948a [ 169.209777] RDX: 000055e2547a6260 RSI: 000055e2547a62e0 RDI: 000055e2547aeaf0 [ 169.210342] RBP: 0000000000000000 R08: 000055e2547a6280 R09: 0000000000000020 [ 169.210843] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 000055e2547aeaf0 [ 169.211307] R13: 000055e2547a6260 R14: 0000000000000000 R15: 00000000ffffffff [ 169.211913] </TASK> [ 169.212304] [ 169.212680] Allocated by task 0: [ 169.212963] (stack is not available) [ 169.213200] [ 169.213472] The buggy address belongs to the object at ffff8880094b5e00 [ 169.213472] which belongs to the cache UDP of size 1152 [ 169.214095] The buggy address is located 1088 bytes inside of [ 169.214095] 1152-byte region [ffff8880094b5e00, ffff8880094b6280) [ 169.214639] [ 169.215004] The buggy address belongs to the physical page: [ 169.215766] page:000000002e324c8c refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x94b4 [ 169.218412] head:000000002e324c8c order:2 compound_mapcount:0 compound_pincount:0 [ 169.219078] flags: 0xfffffc0010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff) [ 169.220272] raw: 000fffffc0010200 ---truncated---
CVE-2022-50442 1 Linux 1 Linux Kernel 2026-01-20 7.1 High
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Validate buffer length while parsing index indx_read is called when we have some NTFS directory operations that need more information from the index buffers. This adds a sanity check to make sure the returned index buffer length is legit, or we may have some out-of-bound memory accesses. [ 560.897595] BUG: KASAN: slab-out-of-bounds in hdr_find_e.isra.0+0x10c/0x320 [ 560.898321] Read of size 2 at addr ffff888009497238 by task exp/245 [ 560.898760] [ 560.899129] CPU: 0 PID: 245 Comm: exp Not tainted 6.0.0-rc6 #37 [ 560.899505] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 560.900170] Call Trace: [ 560.900407] <TASK> [ 560.900732] dump_stack_lvl+0x49/0x63 [ 560.901108] print_report.cold+0xf5/0x689 [ 560.901395] ? hdr_find_e.isra.0+0x10c/0x320 [ 560.901716] kasan_report+0xa7/0x130 [ 560.901950] ? hdr_find_e.isra.0+0x10c/0x320 [ 560.902208] __asan_load2+0x68/0x90 [ 560.902427] hdr_find_e.isra.0+0x10c/0x320 [ 560.902846] ? cmp_uints+0xe0/0xe0 [ 560.903363] ? cmp_sdh+0x90/0x90 [ 560.903883] ? ntfs_bread_run+0x190/0x190 [ 560.904196] ? rwsem_down_read_slowpath+0x750/0x750 [ 560.904969] ? ntfs_fix_post_read+0xe0/0x130 [ 560.905259] ? __kasan_check_write+0x14/0x20 [ 560.905599] ? up_read+0x1a/0x90 [ 560.905853] ? indx_read+0x22c/0x380 [ 560.906096] indx_find+0x2ef/0x470 [ 560.906352] ? indx_find_buffer+0x2d0/0x2d0 [ 560.906692] ? __kasan_kmalloc+0x88/0xb0 [ 560.906977] dir_search_u+0x196/0x2f0 [ 560.907220] ? ntfs_nls_to_utf16+0x450/0x450 [ 560.907464] ? __kasan_check_write+0x14/0x20 [ 560.907747] ? mutex_lock+0x8f/0xe0 [ 560.907970] ? __mutex_lock_slowpath+0x20/0x20 [ 560.908214] ? kmem_cache_alloc+0x143/0x4b0 [ 560.908459] ntfs_lookup+0xe0/0x100 [ 560.908788] __lookup_slow+0x116/0x220 [ 560.909050] ? lookup_fast+0x1b0/0x1b0 [ 560.909309] ? lookup_fast+0x13f/0x1b0 [ 560.909601] walk_component+0x187/0x230 [ 560.909944] link_path_walk.part.0+0x3f0/0x660 [ 560.910285] ? handle_lookup_down+0x90/0x90 [ 560.910618] ? path_init+0x642/0x6e0 [ 560.911084] ? percpu_counter_add_batch+0x6e/0xf0 [ 560.912559] ? __alloc_file+0x114/0x170 [ 560.913008] path_openat+0x19c/0x1d10 [ 560.913419] ? getname_flags+0x73/0x2b0 [ 560.913815] ? kasan_save_stack+0x3a/0x50 [ 560.914125] ? kasan_save_stack+0x26/0x50 [ 560.914542] ? __kasan_slab_alloc+0x6d/0x90 [ 560.914924] ? kmem_cache_alloc+0x143/0x4b0 [ 560.915339] ? getname_flags+0x73/0x2b0 [ 560.915647] ? getname+0x12/0x20 [ 560.916114] ? __x64_sys_open+0x4c/0x60 [ 560.916460] ? path_lookupat.isra.0+0x230/0x230 [ 560.916867] ? __isolate_free_page+0x2e0/0x2e0 [ 560.917194] do_filp_open+0x15c/0x1f0 [ 560.917448] ? may_open_dev+0x60/0x60 [ 560.917696] ? expand_files+0xa4/0x3a0 [ 560.917923] ? __kasan_check_write+0x14/0x20 [ 560.918185] ? _raw_spin_lock+0x88/0xdb [ 560.918409] ? _raw_spin_lock_irqsave+0x100/0x100 [ 560.918783] ? _find_next_bit+0x4a/0x130 [ 560.919026] ? _raw_spin_unlock+0x19/0x40 [ 560.919276] ? alloc_fd+0x14b/0x2d0 [ 560.919635] do_sys_openat2+0x32a/0x4b0 [ 560.920035] ? file_open_root+0x230/0x230 [ 560.920336] ? __rcu_read_unlock+0x5b/0x280 [ 560.920813] do_sys_open+0x99/0xf0 [ 560.921208] ? filp_open+0x60/0x60 [ 560.921482] ? exit_to_user_mode_prepare+0x49/0x180 [ 560.921867] __x64_sys_open+0x4c/0x60 [ 560.922128] do_syscall_64+0x3b/0x90 [ 560.922369] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 560.923030] RIP: 0033:0x7f7dff2e4469 [ 560.923681] Code: 00 f3 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 088 [ 560.924451] RSP: 002b:00007ffd41a210b8 EFLAGS: 00000206 ORIG_RAX: 0000000000000002 [ 560.925168] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f7dff2e4469 [ 560.925655] RDX: 0000000000000000 RSI: 0000000000000002 RDI: ---truncated---
CVE-2023-53465 1 Linux 1 Linux Kernel 2026-01-20 7.1 High
In the Linux kernel, the following vulnerability has been resolved: soundwire: qcom: fix storing port config out-of-bounds The 'qcom_swrm_ctrl->pconfig' has size of QCOM_SDW_MAX_PORTS (14), however we index it starting from 1, not 0, to match real port numbers. This can lead to writing port config past 'pconfig' bounds and overwriting next member of 'qcom_swrm_ctrl' struct. Reported also by smatch: drivers/soundwire/qcom.c:1269 qcom_swrm_get_port_config() error: buffer overflow 'ctrl->pconfig' 14 <= 14
CVE-2025-39839 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-20 7.1 High
In the Linux kernel, the following vulnerability has been resolved: batman-adv: fix OOB read/write in network-coding decode batadv_nc_skb_decode_packet() trusts coded_len and checks only against skb->len. XOR starts at sizeof(struct batadv_unicast_packet), reducing payload headroom, and the source skb length is not verified, allowing an out-of-bounds read and a small out-of-bounds write. Validate that coded_len fits within the payload area of both destination and source sk_buffs before XORing.
CVE-2025-39853 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-20 7.1 High
In the Linux kernel, the following vulnerability has been resolved: i40e: Fix potential invalid access when MAC list is empty list_first_entry() never returns NULL - if the list is empty, it still returns a pointer to an invalid object, leading to potential invalid memory access when dereferenced. Fix this by using list_first_entry_or_null instead of list_first_entry.
CVE-2024-30516 2 Saasproject, Wordpress 2 Booking Package, Wordpress 2026-01-20 7.5 High
Improper Validation of Specified Quantity in Input vulnerability in SaasProject Booking Package allows Accessing Functionality Not Properly Constrained by ACLs.This issue affects Booking Package: from n/a through 1.6.27.
CVE-2025-43025 1 Hp 1 Universal Print Driver 2026-01-20 7.5 High
HP Universal Print Driver is potentially vulnerable to denial of service due to buffer overflow in versions of UPD 7.4 or older (e.g., v7.3.x, v7.2.x, v7.1.x, etc.).
CVE-2025-9086 3 Curl, Debian, Haxx 3 Curl, Debian Linux, Curl 2026-01-20 7.5 High
1. A cookie is set using the `secure` keyword for `https://target` 2. curl is redirected to or otherwise made to speak with `http://target` (same hostname, but using clear text HTTP) using the same cookie set 3. The same cookie name is set - but with just a slash as path (`path=\"/\",`). Since this site is not secure, the cookie *should* just be ignored. 4. A bug in the path comparison logic makes curl read outside a heap buffer boundary The bug either causes a crash or it potentially makes the comparison come to the wrong conclusion and lets the clear-text site override the contents of the secure cookie, contrary to expectations and depending on the memory contents immediately following the single-byte allocation that holds the path. The presumed and correct behavior would be to plainly ignore the second set of the cookie since it was already set as secure on a secure host so overriding it on an insecure host should not be okay.